Role of executive functions in the relations of state- and trait-math anxiety with math performance.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: New York Academy of Sciences Country of Publication: United States NLM ID: 7506858 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1749-6632 (Electronic) Linking ISSN: 00778923 NLM ISO Abbreviation: Ann N Y Acad Sci Subsets: MEDLINE
    • Publication Information:
      Publication: 2006- : New York, NY : Malden, MA : New York Academy of Sciences ; Blackwell
      Original Publication: New York, The Academy.
    • Subject Terms:
    • Abstract:
      The detrimental effect of math anxiety on math performance is thought to be mediated by executive functions. Previous studies have primarily focused on trait-math anxiety rather than state-math anxiety and have typically examined a single executive function rather than comprehensively evaluating all of them. Here, we used a structural equation modeling approach to concurrently determine the potential mediating roles of different executive functions (i.e., inhibition, switching, and updating) in the relationships between both state- and trait-math anxiety and math performance. A battery of computer-based tasks and questionnaires were administered to 205 university students. Two relevant results emerged. First, confirmatory factor analysis suggests that math anxiety encompassed both trait and state dimensions and, although they share substantial variance, trait-math anxiety predicted math performance over and above state-math anxiety. Second, working memory updating was the only executive function that mediated the relationship between math anxiety and math performance; neither inhibition nor switching played mediating roles. This calls into question whether some general proposals about the relationship between anxiety and executive functions can be extended specifically to math anxiety. We also raise the possibility that working memory updating or general cognitive difficulties might precede individual differences in math anxiety.
      (© 2024 The Authors. Annals of the New York Academy of Sciences published by Wiley Periodicals LLC on behalf of The New York Academy of Sciences.)
    • References:
      Foley, A. E., Herts, J. B., Borgonovi, F., Guerriero, S., Levine, S. C., & Beilock, S. L. (2017). The math anxiety‐performance link: A global phenomenon. Current Directions in Psychological Science, 26, 52–58. https://doi.org/10.1177/0963721416672463.
      Lau, N. T. T., Hawes, Z., Tremblay, P., & Ansari, D. (2022). Disentangling the individual and contextual effects of math anxiety: A global perspective. Proceedings of the National Academy of Sciences, 119, e2115855119. https://doi.org/10.1073/pnas.2115855119.
      Barroso, C., Ganley, C. M., Mcgraw, A. L., Geer, E. A., Hart, S. A., & Daucourt, M. C. (2021). A meta‐analysis of the relation between math anxiety and math achievement. Psychological Bulletin, 147, 134–168. https://doi.org/10.1037/bul0000307.
      Namkung, J. M., Peng, P., & Lin, X. (2019). The relation between mathematics anxiety and mathematics performance among school‐aged students: A meta‐analysis. Review of Educational Research, 89, 459–496. https://doi.org/10.3102/0034654319843494.
      Caviola, S., Toffalini, E., Giofrè, D., Ruiz, J. M., Szűcs, D., & Mammarella, I. C. (2022). Math performance and academic anxiety forms, from sociodemographic to cognitive aspects: A meta‐analysis on 906,311 participants. Educational Psychology Review, 34, 363–399. https://doi.org/10.1007/s10648‐021‐09618‐5.
      Zhang, J., Zhao, N., & Kong, Q. P. (2019). The relationship between math anxiety and math performance: A meta‐analytic investigation. Frontiers in Psychology, 10, 1613. https://doi.org/10.3389/fpsyg.2019.01613.
      Hembree, R. (1990). The nature, effects, and relief of mathematics anxiety. Journal for Research in Mathematics Education, 21, 33–46. https://doi.org/10.5951/jresematheduc.21.1.0033.
      Daker, R. J., Gattas, S. U., Sokolowski, H. M., Green, A. E., & Lyons, I. M. (2021). First‐year students’ math anxiety predicts STEM avoidance and underperformance throughout university, independently of math ability. npj Science of Learning, 6, 17. https://doi.org/10.1038/s41539‐021‐00095‐7.
      Ramirez, G., Shaw, S. T., & Maloney, E. A. (2018). Math anxiety: Past research, promising interventions, and a new interpretation framework. Educational Psychologist, 53, 145–164. https://doi.org/10.1080/00461520.2018.1447384.
      Mammarella, I. C., Caviola, S., Rossi, S., Patron, E., & Palomba, D. (2023). Multidimensional components of (state) mathematics anxiety: Behavioral, cognitive, emotional, and psychophysiological consequences. Annals of the New York Academy of Sciences, 1523, 91–103. https://doi.org/10.1111/nyas.14982.
      Bieg, M., Goetz, T., & Lipnevich, A. A. (2014). What students think they feel differs from what they really feel—Academic self‐concept moderates the discrepancy between students’ trait and state emotional self‐reports. PLoS ONE, 9, e92563. https://doi.org/10.1371/journal.pone.0092563.
      Daches Cohen, L., Korem, N., & Rubinsten, O. (2021). Math anxiety is related to math difficulties and composed of emotion regulation and anxiety predisposition: A network analysis study. Brain Sciences, 11, 1609. https://doi.org/10.3390/brainsci11121609.
      Bieg, M., Goetz, T., Wolter, I., & Hall, N. C. (2015). Gender stereotype endorsement differentially predicts girls’ and boys’ trait‐state discrepancy in math anxiety. Frontiers in Psychology, 6, 1404. https://doi.org/10.3389/fpsyg.2015.01404.
      Goetz, T., Bieg, M., Lüdtke, O., Pekrun, R., & Hall, N. C. (2013). Do girls really experience more anxiety in mathematics? Psychological Science, 24, 2079–2087. https://doi.org/10.1177/0956797613486989.
      Orbach, L., Herzog, M., & Fritz, A. (2019). Relation of state‐ and trait‐math anxiety to intelligence, math achievement and learning motivation. Journal of Numerical Cognition, 5, 371–399. https://doi.org/10.5964/jnc.v5i3.204.
      Conlon, R. A., Hicks, A., Barroso, C., & Ganley, C. M. (2021). The effect of the timing of math anxiety measurement on math outcomes. Learning and Individual Differences, 86, 101962. https://doi.org/10.1016/j.lindif.2020.101962.
      Di Lonardo Burr, S. M., & Lefevre, J.‐A. (2021). The subject matters: Relations among types of anxiety, ADHD symptoms, math performance, and literacy performance. Cognition and Emotion, 35, 1334–1349. https://doi.org/10.1080/02699931.2021.1955243.
      Trezise, K., & Reeve, R. A. (2014). Working memory, worry, and algebraic ability. Journal of Experimental Child Psychology, 121, 120–136. https://doi.org/10.1016/j.jecp.2013.12.001.
      Trezise, K., & Reeve, R. A. (2016). Worry and working memory influence each other iteratively over time. Cognition and Emotion, 30, 353–368. https://doi.org/10.1080/02699931.2014.1002755.
      Orbach, L., Herzog, M., & Fritz, A. (2020). State‐ and trait‐math anxiety and their relation to math performance in children: The role of core executive functions. Cognition, 200, 104271. https://doi.org/10.1016/j.cognition.2020.104271.
      Daker, R. J., Gattas, S. U., Necka, E. A., Green, A. E., & Lyons, I. M. (2023). Does anxiety explain why math‐anxious people underperform in math? npj Science of Learning, 8, 6. https://doi.org/10.1038/s41539‐023‐00156‐z.
      Chang, H., & Beilock, S. L. (2016). The math anxiety‐math performance link and its relation to individual and environmental factors: A review of current behavioral and psychophysiological research. Current Opinion in Behavioral Sciences, 10, 33–38. https://doi.org/10.1016/j.cobeha.2016.04.011.
      Dowker, A. (2019). Mathematics anxiety and performance. In I. C. Mammarella, S. Caviola, & A. Dowker (Eds.), Mathematics Anxiety (1st ed., pp. 62–76). Routledge. https://doi.org/10.4324/9780429199981‐4.
      Cohen, L. D., & Rubinsten, O. (2021). The complex pathways toward the development of math anxiety and links with achievements. In W. Fias & A. Henik (Eds.), Heterogeneous Contributions to Numerical Cognition (pp. 311–326). Elsevier. https://doi.org/10.1016/B978‐0‐12‐817414‐2.00003‐8.
      Suárez‐Pellicioni, M., Núñez‐Peña, M. I., & Colomé, À. (2016). Math anxiety: A review of its cognitive consequences, psychophysiological correlates, and brain bases. Cognitive, Affective & Behavioral Neuroscience, 16, 3–22. https://doi.org/10.3758/s13415‐015‐0370‐7.
      Carey, E., Hill, F., Devine, A., & Szücs, D. (2016). The chicken or the egg? The direction of the relationship between mathematics anxiety and mathematics performance. Frontiers in Psychology, 6, 1987. https://doi.org/10.3389/fpsyg.2015.01987.
      Eysenck, M. W., & Calvo, M. G. (1992). Anxiety and performance: The processing efficiency theory. Cognition & Emotion, 6, 409–434. https://doi.org/10.1080/02699939208409696.
      Miyake, A., & Shah, P. (1999). Models of working memory: Mechanisms of active maintenance and executive control (1st ed.). Cambridge University Press. https://doi.org/10.1017/CBO9781139174909.
      Mammarella, I. C., Hill, F., Devine, A., Caviola, S., & Szűcs, D. (2015). Math anxiety and developmental dyscalculia: A study on working memory processes. Journal of Clinical and Experimental Neuropsychology, 37, 878–887. https://doi.org/10.1080/13803395.2015.1066759.
      Miller, H., & Bichsel, J. (2004). Anxiety, working memory, gender, and math performance. Personality and Individual Differences, 37, 591–606. https://doi.org/10.1016/j.paid.2003.09.029.
      Passolunghi, M. C., Caviola, S., De Agostini, R., Perin, C., & Mammarella, I. C. (2016). Mathematics anxiety, working memory, and mathematics performance in secondary‐school children. Frontiers in Psychology, 7, 42. https://doi.org/10.3389/fpsyg.2016.00042.
      Shi, Z., & Liu, P. (2016). Worrying thoughts limit working memory capacity in math anxiety. PLoS ONE, 11, e0165644. https://doi.org/10.1371/journal.pone.0165644.
      Finell, J., Sammallahti, E., Korhonen, J., Eklöf, H., & Jonsson, B. (2022). Working memory and its mediating role on the relationship of math anxiety and math performance: A meta‐analysis. Frontiers in Psychology, 12, 798090. https://doi.org/10.3389/fpsyg.2021.798090.
      Ganley, C. M., & Vasilyeva, M. (2014). The role of anxiety and working memory in gender differences in mathematics. Journal of Educational Psychology, 106, 105–120. https://doi.org/10.1037/a0034099.
      Justicia‐Galiano, M. J., Martín‐Puga, M. E., Linares, R., & Pelegrina, S. (2017). Math anxiety and math performance in children: The mediating roles of working memory and math self‐concept. British Journal of Educational Psychology, 87, 573–589. https://doi.org/10.1111/bjep.12165.
      Ng, E., & Lee, K. (2015). Effects of trait test anxiety and state anxiety on children's working memory task performance. Learning and Individual Differences, 40, 141–148. https://doi.org/10.1016/j.lindif.2015.04.007.
      Owens, M., Stevenson, J., Hadwin, J. A., & Norgate, R. (2012). Anxiety and depression in academic performance: An exploration of the mediating factors of worry and working memory. School Psychology International, 33, 433–449. https://doi.org/10.1177/0143034311427433.
      Skagerlund, K., Östergren, R., Västfjäll, D., & Träff, U. (2019). How does mathematics anxiety impair mathematical abilities? Investigating the link between math anxiety, working memory, and number processing. PLoS ONE, 14, e0211283. https://doi.org/10.1371/journal.pone.0211283.
      Pellizzoni, S., Cargnelutti, E., Cuder, A., & Passolunghi, M. C. (2022). The interplay between math anxiety and working memory on math performance: A longitudinal study. Annals of the New York Academy of Sciences, 1510, 132–144. https://doi.org/10.1111/nyas.14722.
      Szczygieł, M. (2021). The relationship between math anxiety and math achievement in young children is mediated through working memory, not by number sense, and it is not direct. Contemporary Educational Psychology, 65, 101949. https://doi.org/10.1016/j.cedpsych.2021.101949.
      Živković, M., Pellizzoni, S., Mammarella, I. C., & Passolunghi, M. C. (2023). The relationship betweens math anxiety and arithmetic reasoning: The mediating role of working memory and self‐competence. Current Psychology, 42, 14506–14516. https://doi.org/10.1007/s12144‐022‐02765‐0.
      Korem, N., Cohen, L. D., & Rubinsten, O. (2022). The link between math anxiety and performance does not depend on working memory: A network analysis study. Consciousness and Cognition, 100, 103298. https://doi.org/10.1016/j.concog.2022.103298.
      Eysenck, M. W., Derakshan, N., Santos, R., & Calvo, M. G. (2007). Anxiety and cognitive performance: Attentional control theory. Emotion (Washington, D.C.), 7, 336–353. https://doi.org/10.1037/1528‐3542.7.2.336.
      Baddeley, A. (1996). Exploring the central executive. Quarterly Journal of Experimental Psychology A, 49, 5–28. https://doi.org/10.1080/027249896392784.
      Miyake, A., Friedman, N. P., Emerson, M. J., Witzki, A. H., Howerter, A., & Wager, T. D. (2000). The unity and diversity of executive functions and their contributions to complex “frontal lobe” tasks: A latent variable analysis. Cognitive Psychology, 41, 49–100. https://doi.org/10.1006/cogp.1999.0734.
      Bull, R., & Lee, K. (2014). Executive functioning and mathematics achievement. Child Development Perspectives, 8, 36–41. https://doi.org/10.1111/cdep.12059.
      Emslander, V., & Scherer, R. (2022). The relation between executive functions and math intelligence in preschool children: A systematic review and meta‐analysis. Psychological Bulletin, 148, 337–369. https://doi.org/10.1037/bul0000369.
      Friso‐Van Den Bos, I., Van Der Ven, S. H. G., Kroesbergen, E. H., & Van Luit, J. E. H. (2013). Working memory and mathematics in primary school children: A meta‐analysis. Educational Research Review, 10, 29–44. https://doi.org/10.1016/j.edurev.2013.05.003.
      Yeniad, N., Malda, M., Mesman, J., Van Ijzendoorn, M. H., & Pieper, S. (2013). Shifting ability predicts math and reading performance in children: A meta‐analytical study. Learning and Individual Differences, 23, 1–9. https://doi.org/10.1016/j.lindif.2012.10.004.
      González‐Gómez, B., Núñez‐Peña, M. I., & Colomé, À. (2023). Math anxiety and the shifting function: An event‐related potential study of arithmetic task switching. European Journal of Neuroscience, 57, 1848–1869. https://doi.org/10.1111/ejn.15984.
      Pizzie, R. G., Raman, N., & Kraemer, D. J. M. (2020). Math anxiety and executive function: Neural influences of task switching on arithmetic processing. Cognitive, Affective & Behavioral Neuroscience, 20, 309–325. https://doi.org/10.3758/s13415‐020‐00770‐z.
      Živković, M., Pellizzoni, S., Mammarella, I. C., & Passolunghi, M. C. (2022). Executive functions, math anxiety and math performance in middle school students. British Journal of Developmental Psychology, 40, 438–452. https://doi.org/10.1111/bjdp.12412.
      Best, J. R., Miller, P. H., & Naglieri, J. A. (2011). Relations between executive function and academic achievement from ages 5 to 17 in a large, representative national sample. Learning and Individual Differences, 21, 327–336. https://doi.org/10.1016/j.lindif.2011.01.007.
      Hopko, D. R., Mcneil, D. W., Gleason, P. J., & Rabalais, A. E. (2002). The emotional Stroop paradigm: Performance as a function of stimulus properties and self‐reported mathematics anxiety. Cognitive Therapy and Research, 26, 157–166. https://doi.org/10.1023/A:1014578218041.
      Suárez‐Pellicioni, M., Núñez‐Peña, M. I., & Colomé, À. (2014). Reactive recruitment of attentional control in math anxiety: An ERP study of numeric conflict monitoring and adaptation. PLoS ONE, 9, e99579. https://doi.org/10.1371/journal.pone.0099579.
      Ashkenazi, S. (2018). Intentional and automatic processing of numerical information in mathematical anxiety: Testing the influence of emotional priming. Cognition and Emotion, 32, 1700–1707. https://doi.org/10.1080/02699931.2018.1435504.
      Van Den Bussche, E., Vanmeert, K., Aben, B., & Sasanguie, D. (2020). Too anxious to control: The relation between math anxiety and inhibitory control processes. Scientific Reports, 10, 19922. https://doi.org/10.1038/s41598‐020‐76920‐7.
      Colomé, À. (2019). Representation of numerical magnitude in math‐anxious individuals. Quarterly Journal of Experimental Psychology, 72, 424–435. https://doi.org/10.1177/1747021817752094.
      Mammarella, I. C., Caviola, S., Giofrè, D., & Borella, E. (2018). Separating math from anxiety: The role of inhibitory mechanisms. Applied Neuropsychology: Child, 7, 342–353. https://doi.org/10.1080/21622965.2017.1341836.
      Silver, A. M., Elliott, L., Reynvoet, B., Sasanguie, D., & Libertus, M. E. (2022). Teasing apart the unique contributions of cognitive and affective predictors of math performance. Annals of the New York Academy of Sciences, 1511, 173–190. https://doi.org/10.1111/nyas.14747.
      Peng, P., Namkung, J., Barnes, M., & Sun, C. (2016). A meta‐analysis of mathematics and working memory: Moderating effects of working memory domain, type of mathematics skill, and sample characteristics. Journal of Educational Psychology, 108, 455–473. https://doi.org/10.1037/edu0000079.
      Raghubar, K. P., Barnes, M. A., & Hecht, S. A. (2010). Working memory and mathematics: A review of developmental, individual difference, and cognitive approaches. Learning and Individual Differences, 20, 110–122. https://doi.org/10.1016/j.lindif.2009.10.005.
      Eysenck, M. W., & Derakshan, N. (2011). New perspectives in attentional control theory. Personality and Individual Differences, 50, 955–960. https://doi.org/10.1016/j.paid.2010.08.019.
      Gustavson, D. E., & Miyake, A. (2016). Trait worry is associated with difficulties in working memory updating. Cognition and Emotion, 30, 1289–1303. https://doi.org/10.1080/02699931.2015.1060194.
      Pelegrina, S., Justicia‐Galiano, M. J., Martín‐Puga, M. E., & Linares, R. (2020). Math anxiety and working memory updating: Difficulties in retrieving numerical information from working memory. Frontiers in Psychology, 11, 669. https://doi.org/10.3389/fpsyg.2020.00669.
      Snyder, H. R., Miyake, A., & Hankin, B. L. (2015). Advancing understanding of executive function impairments and psychopathology: Bridging the gap between clinical and cognitive approaches. Frontiers in Psychology, 6, 328. https://doi.org/10.3389/fpsyg.2015.00328.
      Van Der Sluis, S., De Jong, P. F., & Van Der Leij, A. (2007). Executive functioning in children, and its relations with reasoning, reading, and arithmetic. Intelligence, 35, 427–449. https://doi.org/10.1016/j.intell.2006.09.001.
      Eysenck, M. W. (2012). The impact of anxiety on cognitive performance. In S. Kreitler (Ed.), Cognition and Motivation (1st ed., pp. 96–108). Cambridge University Press. https://doi.org/10.1017/CBO9781139021463.008.
      Hopko, D. R., Mahadevan, R., Bare, R. L., & Hunt, M. K. (2003). The Abbreviated Math Anxiety Scale (AMAS): Construction, validity, and reliability. Assessment, 10, 178–182. https://doi.org/10.1177/1073191103010002008.
      Martín‐Puga, M. E., Justicia‐Galiano, M. J., Gómez‐Pérez, M. M., & Pelegrina, S. (2022). Psychometric properties, factor structure, and gender and educational level invariance of the Abbreviated Math Anxiety Scale (AMAS) in Spanish children and adolescents. Assessment, 29, 425–440. https://doi.org/10.1177/1073191120980064.
      Alexander, L., & Martray, C. (1989). The development of an abbreviated version of the Mathematics Anxiety Rating Scale. Measurement and Evaluation in Counseling and Development, 22, 143–150.
      Núñez‐Peña, M. I., Suárez‐Pellicioni, M., Guilera, G., & Mercadé‐Carranza, C. (2013). A Spanish version of the short Mathematics Anxiety Rating Scale (sMARS). Learning and Individual Differences, 24, 204–210. https://doi.org/10.1016/j.lindif.2012.12.009.
      Ashcraft, M. H. (2002). Math anxiety: Personal, educational, and cognitive consequences. Current Directions in Psychological Science, 11, 181–185. https://doi.org/10.1111/1467‐8721.00196.
      Spielberger, C. D. (2012). State‐Trait Anxiety Inventory for Adults. https://doi.org/10.1037/t06496‐000.
      Muñoz‐Sandoval, A., Woodcock, R., McGrew, K. S., & Mather, N. (2005). Batería III Woodcock−Muñoz: Pruebas de aprovechamiento [Woodcock−Muñoz III Tests of Achievement].
      Yuste, H. C. (2006). Badyg‐E2. Bateria de Aptitudes Diferenciales y Generales. Renovado [Differential and General Aptitude Test Battery. Updated].
      Von Bastian, C. C., & Druey, M. D. (2017). Shifting between mental sets: An individual differences approach to commonalities and differences of task switching components. Journal of Experimental Psychology: General, 146, 1266–1285. https://doi.org/10.1037/xge0000333.
      Lee, K., Ng, E. L., & Ng, S. F. (2009). The contributions of working memory and executive functioning to problem representation and solution generation in algebraic word problems. Journal of Educational Psychology, 101, 373–387. https://doi.org/10.1037/a0013843.
      Oberauer, K., Wendland, M., & Kliegl, R. (2003). Age differences in working memory—The roles of storage and selective access. Memory & Cognition, 31, 563–569. https://doi.org/10.3758/BF03196097.
      Salthouse, T. A., Babcock, R. L., & Shaw, R. J. (1991). Effects of adult age on structural and operational capacities in working memory. Psychology and Aging, 6, 118–127. https://doi.org/10.1037/0882‐7974.6.1.118.
      Linares, R., Borella, E., Lechuga, M. T., Carretti, B., & Pelegrina, S. (2018). Training working memory updating in young adults. Psychological Research, 82, 535–548. https://doi.org/10.1007/s00426‐017‐0843‐0.
      Linares, R., Borella, E., Lechuga, M. T., Carretti, B., & Pelegrina, S. (2019). Nearest transfer effects of working memory training: A comparison of two programs focused on working memory updating. PLoS ONE, 14, e0211321. https://doi.org/10.1371/journal.pone.0211321.
      Kirchner, W. K. (1958). Age differences in short‐term retention of rapidly changing information. Journal of Experimental Psychology, 55, 352–358. https://doi.org/10.1037/h0043688.
      Yntema, D. B. (1963). Keeping track of several things at once. Human Factors, 5, 7–17. https://doi.org/10.1177/001872086300500102.
      Salthouse, T. A., Atkinson, T. M., & Berish, D. E. (2003). Executive functioning as a potential mediator of age‐related cognitive decline in normal adults. Journal of Experimental Psychology: General, 132, 566–594. https://doi.org/10.1037/0096‐3445.132.4.566.
      Logan, G. D., & Cowan, W. B. (1984). On the ability to inhibit thought and action: A theory of an act of control. Psychological Review, 91, 295–327. https://doi.org/10.1037/0033‐295X.91.3.295.
      Kline, R. B. (2016). Principles and practice of structural equation modeling (4th ed.). Guilford Press.
      Friedman, N. P., & Miyake, A. (2004). The relations among inhibition and interference control functions: A latent‐variable analysis. Journal of Experimental Psychology: General, 133, 101–135. https://doi.org/10.1037/0096‐3445.133.1.101.
      Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. Journal of Statistical Software, 48(2), 1–36. https://doi.org/10.18637/jss.v048.i02.
      R Core Team. (2022). R: A language and environment for statistical computing.
      Hu, L.‐T., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6, 1–55. https://doi.org/10.1080/10705519909540118.
      Satorra, A., & Bentler, P. M. (2001). A scaled difference chi‐square test statistic for moment structure analysis. Psychometrika, 66, 507–514. https://doi.org/10.1007/BF02296192.
      Karr, J. E., Areshenkoff, C. N., Rast, P., Hofer, S. M., Iverson, G. L., & Garcia‐Barrera, M. A. (2018). The unity and diversity of executive functions: A systematic review and re‐analysis of latent variable studies. Psychological Bulletin, 144, 1147–1185. https://doi.org/10.1037/bul0000160.
      Friedman, N. P., & Miyake, A. (2017). Unity and diversity of executive functions: Individual differences as a window on cognitive structure. Cortex, 86, 186–204. https://doi.org/10.1016/j.cortex.2016.04.023.
      Lehto, J. E., Juujärvi, P., Kooistra, L., & Pulkkinen, L. (2003). Dimensions of executive functioning: Evidence from children. British Journal of Developmental Psychology, 21, 59–80. https://doi.org/10.1348/026151003321164627.
      Vaughan, L., & Giovanello, K. (2010). Executive function in daily life: Age‐related influences of executive processes on instrumental activities of daily living. Psychology and Aging, 25, 343–355. https://doi.org/10.1037/a0017729.
      Hill, F., Mammarella, I. C., Devine, A., Caviola, S., Passolunghi, M. C., & Szűcs, D. (2016). Maths anxiety in primary and secondary school students: Gender differences, developmental changes and anxiety specificity. Learning and Individual Differences, 48, 45–53. https://doi.org/10.1016/j.lindif.2016.02.006.
      Chuah, Y. M. L., & Maybery, M. T. (1999). Verbal and spatial short‐term memory: Common sources of developmental change? Journal of Experimental Child Psychology, 73, 7–44. https://doi.org/10.1006/jecp.1999.2493.
      Conway, A. R. A., Kovacs, K., Hao, H., Rosales, K. P., & Snijder, J. P. (2021). Individual differences in attention and intelligence: A united cognitive/psychometric approach. Journal of Intelligence, 9, 34. https://doi.org/10.3390/jintelligence9030034.
      Giofrè, D., Mammarella, I. C., & Cornoldi, C. (2014). The relationship among geometry, working memory, and intelligence in children. Journal of Experimental Child Psychology, 123, 112–128. https://doi.org/10.1016/j.jecp.2014.01.002.
      Unsworth, N., & Spillers, G. J. (2010). Working memory capacity: Attention control, secondary memory, or both? A direct test of the dual‐component model. Journal of Memory and Language, 62, 392–406. https://doi.org/10.1016/j.jml.2010.02.001.
      Macher, D., Paechter, M., Papousek, I., Ruggeri, K., Freudenthaler, H. H., & Arendasy, M. (2013). Statistics anxiety, state anxiety during an examination, and academic achievement. British Journal of Educational Psychology, 83, 535–549. https://doi.org/10.1111/j.2044‐8279.2012.02081.x.
      Berggren, N., & Derakshan, N. (2013). Attentional control deficits in trait anxiety: Why you see them and why you don't. Biological Psychology, 92, 440–446. https://doi.org/10.1016/j.biopsycho.2012.03.007.
      Moran, T. P. (2016). Anxiety and working memory capacity: A meta‐analysis and narrative review. Psychological Bulletin, 142, 831–864. https://doi.org/10.1037/bul0000051.
      Friedman, N. P., Miyake, A., Corley, R. P., Young, S. E., Defries, J. C., & Hewitt, J. K. (2006). Not all executive functions are related to intelligence. Psychological Science, 17, 172–179. https://doi.org/10.1111/j.1467‐9280.2006.01681.x.
      Friedman, N. P., Miyake, A., Young, S. E., Defries, J. C., Corley, R. P., & Hewitt, J. K. (2008). Individual differences in executive functions are almost entirely genetic in origin. Journal of Experimental Psychology: General, 137, 201–225. https://doi.org/10.1037/0096‐3445.137.2.201.
      Salthouse, T. A. (2012). How general are the effects of trait anxiety and depressive symptoms on cognitive functioning? Emotion (Washington, D.C.), 12, 1075–1084. https://doi.org/10.1037/a0025615.
      Geary, D. C., Hoard, M. K., Nugent, L., Chu, F., Scofield, J. E., & Ferguson Hibbard, D. (2019). Sex differences in mathematics anxiety and attitudes: Concurrent and longitudinal relations to mathematical competence. Journal of Educational Psychology, 111, 1447–1461. https://doi.org/10.1037/edu0000355.
      Schillinger, F. L., Vogel, S. E., Diedrich, J., & Grabner, R. H. (2018). Math anxiety, intelligence, and performance in mathematics: Insights from the German adaptation of the Abbreviated Math Anxiety Scale (AMAS‐G). Learning and Individual Differences, 61, 109–119. https://doi.org/10.1016/j.lindif.2017.11.014.
      Wang, Z., Rimfeld, K., Shakeshaft, N., Schofield, K., & Malanchini, M. (2020). The longitudinal role of mathematics anxiety in mathematics development: Issues of gender differences and domain‐specificity. Journal of Adolescence, 80, 220–232. https://doi.org/10.1016/j.adolescence.2020.03.003.
      Wu, S. S., Chen, L., Battista, C., Smith Watts, A. K., Willcutt, E. G., & Menon, V. (2017). Distinct influences of affective and cognitive factors on children's non‐verbal and verbal mathematical abilities. Cognition, 166, 118–129. https://doi.org/10.1016/j.cognition.2017.05.016.
      Buckley, S., Reid, K., Goos, M., Lipp, O. V., & Thomson, S. (2016). Understanding and addressing mathematics anxiety using perspectives from education, psychology and neuroscience. Australian Journal of Education, 60, 157–170. https://doi.org/10.1177/0004944116653000.
      Devine, A., Hill, F., Carey, E., & Szűcs, D. (2018). Cognitive and emotional math problems largely dissociate: Prevalence of developmental dyscalculia and mathematics anxiety. Journal of Educational Psychology, 110, 431–444. https://doi.org/10.1037/edu0000222.
      Beilock, S. L., & Decaro, M. S. (2007). From poor performance to success under stress: Working memory, strategy selection, and mathematical problem solving under pressure. Journal of Experimental Psychology: Learning, Memory, and Cognition, 33, 983–998. https://doi.org/10.1037/0278‐7393.33.6.983.
      Maloney, E. A., Risko, E. F., Ansari, D., & Fugelsang, J. (2010). Mathematics anxiety affects counting but not subitizing during visual enumeration. Cognition, 114, 293–297. https://doi.org/10.1016/j.cognition.2009.09.013.
      Maloney, E. A., Ansari, D., & Fugelsang, J. A. (2011). The effect of mathematics anxiety on the processing of numerical magnitude. Quarterly Journal of Experimental Psychology, 64, 10–16. https://doi.org/10.1080/17470218.2010.533278.
      Sorvo, R., Kiuru, N., Koponen, T., Aro, T., Viholainen, H., Ahonen, T., & Aro, M. (2022). Longitudinal and situational associations between math anxiety and performance among early adolescents. Annals of the New York Academy of Sciences, 1514, 174–186. https://doi.org/10.1111/nyas.14788.
      Justicia‐Galiano, M. J., Martín‐Puga, M. E., Linares, R., & Pelegrina, S. (2023). Gender stereotypes about math anxiety: Ability and emotional components. Learning and Individual Differences, 105, 102316. https://doi.org/10.1016/j.lindif.2023.102316.
      Willoughby, M., Holochwost, S. J., Blanton, Z. E., & Blair, C. B. (2014). Executive functions: Formative versus reflective measurement. Measurement: Interdisciplinary Research and Perspectives, 12, 69–95. https://doi.org/10.1080/15366367.2014.929453.
      Rey‐Mermet, A., Gade, M., & Oberauer, K. (2018). Should we stop thinking about inhibition? Searching for individual and age differences in inhibition ability. Journal of Experimental Psychology: Learning, Memory, and Cognition, 44, 501–526. https://doi.org/10.1037/xlm0000450.
    • Grant Information:
      PID2020-120065GB-I00 Spanish Ministry of Science and Innovation (MCIN/AEI/10.13039/501100011033); European Union NextGenerationEU/PRTR
    • Contributed Indexing:
      Keywords: executive functions; math anxiety; math performance; state‐math anxiety; structural equation modeling; trait‐math anxiety; working memory updating
    • Publication Date:
      Date Created: 20240410 Date Completed: 20240522 Latest Revision: 20240522
    • Publication Date:
      20240523
    • Accession Number:
      10.1111/nyas.15140
    • Accession Number:
      38598473