Inactivation of Three Stacked Genes of Cytosolic Peroxiredoxins by Genome Editing.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Author(s): Vogelsang L;Vogelsang L; Dietz KJ; Dietz KJ
  • Source:
    Methods in molecular biology (Clifton, N.J.) [Methods Mol Biol] 2024; Vol. 2798, pp. 235-263.
  • Publication Type:
    Journal Article
  • Language:
    English
  • Additional Information
    • Source:
      Publisher: Humana Press Country of Publication: United States NLM ID: 9214969 Publication Model: Print Cited Medium: Internet ISSN: 1940-6029 (Electronic) Linking ISSN: 10643745 NLM ISO Abbreviation: Methods Mol Biol Subsets: MEDLINE
    • Publication Information:
      Publication: Totowa, NJ : Humana Press
      Original Publication: Clifton, N.J. : Humana Press,
    • Subject Terms:
    • Abstract:
      A set of peroxidases detoxifies H 2 O 2 and mediates H 2 O 2 -dependent signal propagation. The peroxidases include peroxiredoxins, glutathione peroxidases, ascorbate peroxidases, and catalases. This at least partial redundancy impedes addressing individual proteins in living plant cells so that the protein functions are often studied by biochemical assays in vitro. In vivo analysis frequently relies on transgenic insertion lines resulting in the knockdown or knockout of the protein of interest. However, many proteins have multiple isoforms in close genomic arrangement so that even crossing of transgenic lines does not allow for a knockdown of all isoforms. The genes encoding for the three cytosolic peroxiredoxins PRXIIB, C, and D in Arabidopsis thaliana are located in close vicinity on chromosome 1 so that crossing over between the genes most rarely occurs and successful crossing of the plants appears impossible. Genome editing instead allows targeting of multiple isoforms and knocks out several genes at once. This chapter describes how to inactivate the three cytosolic peroxiredoxins by CRISPR/Cas9 in A. thaliana.
      (© 2024. The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature.)
    • References:
      Bae S, Park J, Kim JS (2014) Cas-OFFinder: a fast and versatile algorithm that searches for potential off-target sites of Cas9 RNA-guided endonucleases. Bioinformatics 30(10):1473–1475. (PMID: 10.1093/bioinformatics/btu048244631814016707)
      Chari R, Yeo NC, Chavez A, Church GM (2017) sgRNA Scorer 2.0: a species-independent model to predict CRISPR/Cas9 activity. ACS Synth Biol 6(5):902–904. (PMID: 10.1021/acssynbio.6b00343281463565793212)
      Concordet JP, Haeussler M (2018) CRISPOR: intuitive guide selection for CRISPR/Cas9 genome editing experiments and screens. Nucleic Acids Res 46(W1):W242–W245. (PMID: 10.1093/nar/gky354297627166030908)
      De Smet R, Adams KL, Vandepoele K, Van Montagu MC, Maere S, Van de Peer Y (2013) Convergent gene loss following gene and genome duplications creates single-copy families in flowering plants. Proc Natl Acad Sci 110(8):2898–2903. (PMID: 10.1073/pnas.1300127110233821903581894)
      Doench JG, Fusi N, Sullender M, Hegde M, Vaimberg EW, Donovan KF et al (2016) Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol 34(2):184–191. (PMID: 10.1038/nbt.3437267801804744125)
      Edwards K, Johnstone C, Thompson C (1991) A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res 19(6):1349. (PMID: 10.1093/nar/19.6.13492030957333874)
      Gupta D, Bhattacharjee O, Mandal D, Sen MK, Dey D, Dasgupta A et al (2019) CRISPR-Cas9 system: a new-fangled dawn in gene editing. Life Sci 232:116636. (PMID: 10.1016/j.lfs.2019.11663631295471)
      Hahn F, Eisenhut M, Mantegazza O, Weber AP (2017) Generation of targeted knockout mutants in Arabidopsis thaliana using CRISPR/Cas9. Bio-protocol 7(13):e2384–e2384. (PMID: 10.21769/BioProtoc.2384345411228413554)
      Heigwer F, Kerr G, Boutros M (2014) E-CRISP: fast CRISPR target site identification. Nat Methods 11(2):122–123. (PMID: 10.1038/nmeth.281224481216)
      Labun K, Montague TG, Krause M, Torres Cleuren YN, Tjeldnes H, Valen E (2019) CHOPCHOP v3: expanding the CRISPR web toolbox beyond genome editing. Nucleic Acids Res 47(W1):W171–W174. (PMID: 10.1093/nar/gkz365311063716602426)
      Liu H, Wei Z, Dominguez A, Li Y, Wang X, Qi LS (2015) CRISPR-ERA: a comprehensive design tool for CRISPR-mediated gene editing, repression and activation. Bioinformatics 31(22):3676–3678. (PMID: 10.1093/bioinformatics/btv423262094304757951)
      Ma X, Zhu Q, Chen Y, Liu YG (2016) CRISPR/Cas9 platforms for genome editing in plants: developments and applications. Mol Plant 9(7):961–974. (PMID: 10.1016/j.molp.2016.04.00927108381)
      Moreno-Mateos MA, Vejnar CE, Beaudoin JD, Fernandez JP, Mis EK, Khokha MK, Giraldez AJ (2015) CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo. Nat Methods 12(10):982–988. (PMID: 10.1038/nmeth.3543263228394589495)
      Naito Y, Hino K, Bono H, Ui-Tei K (2015) CRISPRdirect: software for designing CRISPR/Cas guide RNA with reduced off-target sites. Bioinformatics 31(7):1120–1123. (PMID: 10.1093/bioinformatics/btu74325414360)
      Nietzel T, Elsässer M, Ruberti C, Steinbeck J, Ugalde JM, Fuchs P et al (2019) The fluorescent protein sensor ro GFP 2-Orp1 monitors in vivo H2O2 and thiol redox integration and elucidates intracellular H2O2 dynamics during elicitor-induced oxidative burst in Arabidopsis. New Phytol 221(3):1649–1664. (PMID: 10.1111/nph.1555030347449)
      O’Malley RC, Barragan CC, Ecker JR (2015) A user’s guide to the Arabidopsis T-DNA insertion mutant collections. In: Plant functional genomics: methods and protocols, pp 323–342. (PMID: 10.1007/978-1-4939-2444-8_16)
      Prykhozhij SV, Rajan V, Gaston D, Berman JN (2015) CRISPR multitargeter: a web tool to find common and unique CRISPR single guide RNA targets in a set of similar sequences. PLoS One 10(3):e0119372. (PMID: 10.1371/journal.pone.0119372257424284351176)
      Pugh J (2023) The current state of nanopore sequencing. In: Nanopore sequencing: methods and protocols, pp 3–14. (PMID: 10.1007/978-1-0716-2996-3_1)
      Sallin O, Reymond L, Gondrand C, Raith F, Koch B, Johnsson K (2018) Semisynthetic biosensors for mapping cellular concentrations of nicotinamide adenine dinucleotides. elife 7:e32638. (PMID: 10.7554/eLife.32638298091365990361)
      Sanson KR, Hanna RE, Hegde M, Donovan KF, Strand C, Sullender ME et al (2018) Optimized libraries for CRISPR-Cas9 genetic screens with multiple modalities. Nat Commun 9(1):5416. (PMID: 10.1038/s41467-018-07901-8305757466303322)
      Schumacher J, Kaufmann K, Yan W (2017) Multiplexed GuideRNA-expression to efficiently mutagenize multiple loci in arabidopsis by CRISPR-Cas9. Bio-protocol 7(5):e2166–e2166. (PMID: 10.21769/BioProtoc.2166)
      Stothard P (2000) The sequence manipulation suite: JavaScript programs for analyzing and formatting protein and DNA sequences. BioTechniques 28(6):1102–1104. (PMID: 10.2144/00286ir0110868275)
      Untergasser A, Bijl GJ, Liu W, Bisseling T, Schaart JG, Geurts R (2012) One-step agrobacterium mediated transformation of eight genes essential for rhizobium symbiotic signaling using the novel binary vector system pHUGE. PLoS One 7(10):e47885. (PMID: 10.1371/journal.pone.0047885231128643480454)
      Vogelsang L, Dietz KJ (2022) Plant thiol peroxidases as redox sensors and signal transducers in abiotic stress acclimation. Free Radic Biol Med.
      Xie S, Shen B, Zhang C, Huang X, Zhang Y (2014) sgRNAcas9: a software package for designing CRISPR sgRNA and evaluating potential off-target cleavage sites. PLoS One 9(6):e100448. (PMID: 10.1371/journal.pone.0100448249563864067335)
      Xu H, Xiao T, Chen CH, Li W, Meyer CA, Wu Q et al (2015) Sequence determinants of improved CRISPR sgRNA design. Genome Res 25(8):1147–1157. (PMID: 10.1101/gr.191452.115260637384509999)
    • Contributed Indexing:
      Keywords: Arabidopsis thaliana; CRISPR/Cas9; Genome editing; Isogenes; Peroxiredoxins
    • Accession Number:
      EC 1.11.1.15 (Peroxiredoxins)
      BBX060AN9V (Hydrogen Peroxide)
      0 (Protein Isoforms)
    • Publication Date:
      Date Created: 20240408 Date Completed: 20240409 Latest Revision: 20240429
    • Publication Date:
      20240429
    • Accession Number:
      10.1007/978-1-0716-3826-2_17
    • Accession Number:
      38587748