A Novel PINK1 p.F385S Loss-of-Function Mutation in an Indian Family with Parkinson's Disease.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Wiley-Liss Country of Publication: United States NLM ID: 8610688 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1531-8257 (Electronic) Linking ISSN: 08853185 NLM ISO Abbreviation: Mov Disord Subsets: MEDLINE
    • Publication Information:
      Publication: <2001->: New York, NY : Wiley-Liss
      Original Publication: [New York, N.Y.] : Raven Press, [c1986-
    • Subject Terms:
    • Abstract:
      Background: Most Parkinson's disease (PD) loci have shown low prevalence in the Indian population, highlighting the need for further research.
      Objective: The aim of this study was to characterize a novel phosphatase tensin homolog-induced serine/threonine kinase 1 (PINK1) mutation causing PD in an Indian family.
      Methods: Exome sequencing of a well-characterized Indian family with PD. A novel PINK1 mutation was studied by in silico modeling using AlphaFold2, expression of mutant PINK1 in human cells depleted of functional endogenous PINK1, followed by quantitative image analysis and biochemical assessment.
      Results: We identified a homozygous chr1:20648535-20648535 T>C on GRCh38 (p.F385S) mutation in exon 6 of PINK1, which was absent in 1029 genomes from India and in other known databases. PINK1 F385S lies within the highly conserved DFG motif, destabilizes its active state, and impairs phosphorylation of ubiquitin at serine 65 and proper engagement of parkin upon mitochondrial depolarization.
      Conclusions: We characterized a novel nonconservative mutation in the DFG motif of PINK1, which causes loss of its ubiquitin kinase activity and inhibition of mitophagy. © 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
      (© 2024 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.)
    • References:
      Valente EM, Abou‐Sleiman PM, Caputo V, et al. Hereditary early‐onset Parkinson's disease caused by mutations in PINK1. Science 2004;304(5674):1158–1160. https://doi.org/10.1126/science.1096284.
      Schneider SA, Klein C. PINK1 type of young‐onset Parkinson disease. In: Adam MP, Mirzaa GM, Pagon RA, eds. Seattle (WA): GeneReviews®; 1993.
      Trempe JF, Gehring K. Structural mechanisms of mitochondrial quality control mediated by PINK1 and Parkin. J Mol Biol 2023;435(12):168090. https://doi.org/10.1016/j.jmb.2023.168090.
      Youle RJ, Narendra DP. Mechanisms of mitophagy. Nat Rev Mol Cell Biol 2011;12(1):9–14. https://doi.org/10.1038/nrm3028.
      Gan ZY, Callegari S, Cobbold SA, et al. Activation mechanism of PINK1. Nature 2022;602(7896):328–335. https://doi.org/10.1038/s41586-021-04340-2.
      Rasool S, Veyron S, Soya N, et al. Mechanism of PINK1 activation by autophosphorylation and insights into assembly on the TOM complex. Mol Cell 2022;82(1):44. https://doi.org/10.1016/j.molcel.2021.11.012.
      Gladkova C, Maslen SL, Skehel JM, et al. Mechanism of parkin activation by PINK1. Nature 2018;559(7714):410–414. https://doi.org/10.1038/s41586-018-0224-x.
      Kane LA, Lazarou M, Fogel AI, et al. PINK1 phosphorylates ubiquitin to activate Parkin E3 ubiquitin ligase activity. J Cell Biol 2014;205(2):143–153. https://doi.org/10.1083/jcb.201402104.
      Kazlauskaite A, Kondapalli C, Gourlay R, et al. Parkin is activated by PINK1‐dependent phosphorylation of ubiquitin at Ser65. Biochem J 2014;460(1):127–139. https://doi.org/10.1042/BJ20140334.
      Kondapalli C, Kazlauskaite A, Zhang N, et al. PINK1 is activated by mitochondrial membrane potential depolarization and stimulates Parkin E3 ligase activity by phosphorylating serine 65. Open Biol 2012;2(5). https://doi.org/10.1098/rsob.120080.
      Koyano F, Okatsu K, Kosako H, et al. Ubiquitin is phosphorylated by PINK1 to activate parkin. Nature 2014;510(7503):162. https://doi.org/10.1038/nature13392.
      Ordureau A, Sarraf SA, Duda DM, et al. Quantitative proteomics reveal a feedforward mechanism for mitochondrial PARKIN translocation and ubiquitin chain synthesis. Mol Cell 2014;56(3):360–375. https://doi.org/10.1016/j.molcel.2014.09.007.
      Lazarou M, Jin SM, Kane LA, et al. Role of PINK1 binding to the TOM complex and alternate intracellular membranes in recruitment and activation of the E3 ligase Parkin. Dev Cell 2012;22(2):320–333. https://doi.org/10.1016/j.devcel.2011.12.014.
      Okatsu K, Oka T, Iguchi M, et al. PINK1 autophosphorylation upon membrane potential dissipation is essential for Parkin recruitment to damaged mitochondria. Nat Commun 2012;3. https://doi.org/10.1038/ncomms2016.
      Shiba‐Fukushima K, Imai Y, Yoshida S, et al. PINK1‐mediated phosphorylation of the Parkin ubiquitin‐like domain primes mitochondrial translocation of Parkin and regulates mitophagy. Sci Rep‐UK 2012;2. https://doi.org/10.1038/srep01002.
      Wauer T, Simicek M, Schubert A, et al. Mechanism of phospho‐ubiquitin‐induced PARKIN activation. Nature 2015;524(7565):370. https://doi.org/10.1038/nature14879.
      Geisler S, Holmstrom KM, Skujat D, et al. PINK1/Parkin‐mediated mitophagy is dependent on VDAC1 and p62/SQSTM1. Nat Cell Biol 2010;12(2):119–170. https://doi.org/10.1038/ncb2012.
      Wang X, Winter D, Ashrafi G, et al. PINK1 and Parkin target Miro for phosphorylation and degradation to arrest mitochondrial motility. Cell 2011;147(4):893–906. https://doi.org/10.1016/j.cell.2011.10.018.
      Lechado‐Terradas A, Schepers S, Zittlau KI, et al. Parkin‐dependent mitophagy occurs via proteasome‐dependent steps sequentially targeting separate mitochondrial sub‐compartments for autophagy. Autophagy Rep 2022;1(1):576–602. https://doi.org/10.1080/27694127.2022.2143214.
      Ibanez P, Lesage S, Lohmann E, et al. Mutational analysis of the PINK1 gene in early‐onset parkinsonism in Europe and North Africa. Brain 2006;129(3):686–694. https://doi.org/10.1093/brain/awl005.
      Bajaj A, Senthivel V, Bhoyar R, et al. 1029 genomes of self‐declared healthy individuals from India reveal prevalent and clinically relevant cardiac ion channelopathy variants. Hum Genomics 2022;16(1):30. https://doi.org/10.1186/s40246-022-00402-2.
      Jain A, Bhoyar RC, Pandhare K, et al. IndiGenomes: a comprehensive resource of genetic variants from over 1000 Indian genomes. Nucleic Acids Res 2021;49(D1):D1225–D1232. https://doi.org/10.1093/nar/gkaa923.
      Jumper J, Evans R, Pritzel A, et al. Highly accurate protein structure prediction with AlphaFold. Nature 2021;596(7873):583–589. https://doi.org/10.1038/s41586-021-03819-2.
      Varadi M, Anyango S, Deshpande M, et al. AlphaFold protein structure database: massively expanding the structural coverage of protein‐sequence space with high‐accuracy models. Nucleic Acids Res 2022;50(D1):D439–D444. https://doi.org/10.1093/nar/gkab1061.
      Kellogg EH, Leaver‐Fay A, Baker D. Role of conformational sampling in computing mutation‐induced changes in protein structure and stability. Proteins 2011;79(3):830–838. https://doi.org/10.1002/prot.22921.
      Wettengel J, Reautschnig P, Geisler S, et al. Harnessing human ADAR2 for RNA repair – recoding a PINK1 mutation rescues mitophagy. Nucleic Acids Res 2017;45(5):2797–2808. https://doi.org/10.1093/nar/gkw911.
      Greene AW, Grenier K, Aguileta MA, et al. Mitochondrial processing peptidase regulates PINK1 processing, import and Parkin recruitment. EMBO Rep 2012;13(4):378–385. https://doi.org/10.1038/embor.2012.14.
      Lin W, Kang UJ. Characterization of PINK1 processing, stability, and subcellular localization. J Neurochem 2008;106(1):464–474. https://doi.org/10.1111/j.1471-4159.2008.05398.x.
      Deas E, Plun‐Favreau H, Gandhi S, et al. PINK1 cleavage at position A103 by the mitochondrial protease PARL. Hum Mol Genet 2011;20(5):867–879. https://doi.org/10.1093/hmg/ddq526.
      Ando M, Fiesel FC, Hudec R, et al. The PINK1 p.I368N mutation affects protein stability and ubiquitin kinase activity. Mol Neurodegener 2017;12(1):32. https://doi.org/10.1186/s13024-017-0174-z.
      Denison SR, Wang F, Becker NA, et al. Alterations in the common fragile site gene Parkin in ovarian and other cancers. Oncogene 2003;22(51):8370–8378. https://doi.org/10.1038/sj.onc.1207072.
      Zittlau KI, Lechado‐Terradas A, Nalpas N, et al. Temporal analysis of protein Ubiquitylation and phosphorylation during Parkin‐dependent Mitophagy. Mol Cell Proteomics 2022;21(2):100191. https://doi.org/10.1016/j.mcpro.2021.100191.
      Blauwendraat C, Nalls MA, Singleton AB. The genetic architecture of Parkinson's disease. Lancet Neurol 2020;19(2):170–178. https://doi.org/10.1016/S1474-4422(19)30287-X.
      Perinan MT, Brolin K, Bandres‐Ciga S, et al. Effect modification between genes and environment and Parkinson's disease risk. Ann Neurol 2022;92(5):715–724. https://doi.org/10.1002/ana.26467.
      Kasten M et al. Genotype‐phenotype relations for the Parkinson's disease genes Parkin, PINK1, DJ1: MDSGene systematic review. Mov Disord 2018;33(5):730–741.
      Geisler S, Holmstrom KM, Treis A, et al. The PINK1/Parkin‐mediated mitophagy is compromised by PD‐associated mutations. Autophagy 2010;6(7):871–878. https://doi.org/10.4161/auto.6.7.13286.
    • Grant Information:
      009411 Michael J. Fox Foundation for Parkinson's Research; 023430 Michael J. Fox Foundation for Parkinson's Research; 11879 Michael J. Fox Foundation for Parkinson's Research; 17473 Michael J. Fox Foundation for Parkinson's Research; 654651/GRK2364 Deutsche Forschungsgemeinschaft; SH599/16-1 Deutsche Forschungsgemeinschaft
    • Contributed Indexing:
      Keywords: PINK1; Parkinson's disease; genome sequencing; mitophagy; phosphorylation; ubiquitin
    • Accession Number:
      EC 2.7.11.1 (PTEN-induced putative kinase)
      EC 2.7.- (Protein Kinases)
      EC 2.3.2.27 (Ubiquitin-Protein Ligases)
      EC 2.3.2.27 (parkin protein)
    • Publication Date:
      Date Created: 20240408 Date Completed: 20240720 Latest Revision: 20240806
    • Publication Date:
      20240806
    • Accession Number:
      10.1002/mds.29792
    • Accession Number:
      38586902