Mechanical activation opens a lipid-lined pore in OSCA ion channels.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Nature Publishing Group Country of Publication: England NLM ID: 0410462 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-4687 (Electronic) Linking ISSN: 00280836 NLM ISO Abbreviation: Nature Subsets: MEDLINE
    • Publication Information:
      Publication: Basingstoke : Nature Publishing Group
      Original Publication: London, Macmillan Journals ltd.
    • Subject Terms:
    • Abstract:
      OSCA/TMEM63 channels are the largest known family of mechanosensitive channels 1-3 , playing critical roles in plant 4-7 and mammalian 8,9 mechanotransduction. Here we determined 44 cryogenic electron microscopy structures of OSCA/TMEM63 channels in different environments to investigate the molecular basis of OSCA/TMEM63 channel mechanosensitivity. In nanodiscs, we mimicked increased membrane tension and observed a dilated pore with membrane access in one of the OSCA1.2 subunits. In liposomes, we captured the fully open structure of OSCA1.2 in the inside-in orientation, in which the pore shows a large lateral opening to the membrane. Unusually for ion channels, structural, functional and computational evidence supports the existence of a 'proteo-lipidic pore' in which lipids act as a wall of the ion permeation pathway. In the less tension-sensitive homologue OSCA3.1, we identified an 'interlocking' lipid tightly bound in the central cleft, keeping the channel closed. Mutation of the lipid-coordinating residues induced OSCA3.1 activation, revealing a conserved open conformation of OSCA channels. Our structures provide a global picture of the OSCA channel gating cycle, uncover the importance of bound lipids and show that each subunit can open independently. This expands both our understanding of channel-mediated mechanotransduction and channel pore formation, with important mechanistic implications for the TMEM16 and TMC protein families.
      (© 2024. The Author(s), under exclusive licence to Springer Nature Limited.)
    • References:
      Hou, C. et al. DUF221 proteins are a family of osmosensitive calcium-permeable cation channels conserved across eukaryotes. Cell Res. 24, 632–635 (2014). (PMID: 24503647401133710.1038/cr.2014.14)
      Zhao, X., Yan, X., Liu, Y., Zhang, P. & Ni, X. Co‐expression of mouse TMEM63A, TMEM63B and TMEM63C confers hyperosmolarity activated ion currents in HEK293 cells. Cell Biochem. Funct. 34, 238–241 (2016). (PMID: 2704588510.1002/cbf.3185)
      Murthy, S. E. et al. OSCA/TMEM63 are an evolutionarily conserved family of mechanically activated ion channels. eLife 7, e41844 (2018). (PMID: 30382938623556010.7554/eLife.41844)
      Yuan, F. et al. OSCA1 mediates osmotic-stress-evoked Ca2+ increases vital for osmosensing in Arabidopsis. Nature 514, 367–371 (2014). (PMID: 2516252610.1038/nature13593)
      Li, Y. et al. Genome-wide survey and expression analysis of the OSCA gene family in rice. BMC Plant Biol. 15, 261 (2015). (PMID: 26503287462437910.1186/s12870-015-0653-8)
      Ganie, S. A., Pani, D. R. & Mondal, T. K. Genome-wide analysis of DUF221 domain-containing gene family in Oryza species and identification of its salinity stress-responsive members in rice. PLoS ONE 12, e0182469 (2017). (PMID: 28846681557328610.1371/journal.pone.0182469)
      Ding, S., Feng, X., Du, H. & Wang, H. Genome-wide analysis of maize OSCA family members and their involvement in drought stress. PeerJ 7, e6765 (2019). (PMID: 30997296646239610.7717/peerj.6765)
      Du, H. et al. The cation channel TMEM63B is an osmosensor required for hearing. Cell Rep. 31, 107596 (2020). (PMID: 3237504610.1016/j.celrep.2020.107596)
      Li, S., Li, B., Gao, L., Wang, J. & Yan, Z. Humidity response in Drosophila olfactory sensory neurons requires the mechanosensitive channel TMEM63. Nat. Commun. 13, 3814 (2022). (PMID: 35780140925049910.1038/s41467-022-31253-z)
      Kefauver, J., Ward, A. & Patapoutian, A. Discoveries in structure and physiology of mechanically activated ion channels. Nature 587, 567–576 (2020). (PMID: 33239794847743510.1038/s41586-020-2933-1)
      Douguet, D. & Honoré, E. Mammalian mechanoelectrical transduction: structure and function of force-gated ion channels. Cell 179, 340–354 (2019). (PMID: 3158507810.1016/j.cell.2019.08.049)
      Yan, H. et al. Heterozygous variants in the mechanosensitive ion channel TMEM63A result in transient hypomyelination during infancy. Am. J. Hum. Genet. 105, 996–1004 (2019). (PMID: 31587869684898610.1016/j.ajhg.2019.09.011)
      Li, Q. & Montell, C. Mechanism for food texture preference based on grittiness. Curr. Biol. 31, 1850–1861.e6 (2021). (PMID: 33657409811934610.1016/j.cub.2021.02.007)
      Tábara, L. C. et al. TMEM63C mutations cause mitochondrial morphology defects and underlie hereditary spastic paraplegia. Brain 145, 3095–3107 (2022). (PMID: 35718349947335310.1093/brain/awac123)
      Jojoa-Cruz, S. et al. Cryo-EM structure of the mechanically activated ion channel OSCA1.2. eLife 7, e41845 (2018). (PMID: 30382939623556310.7554/eLife.41845)
      Liu, X., Wang, J. & Sun, L. Structure of the hyperosmolality-gated calcium-permeable channel OSCA1. 2. Nat. Commun. 9, 5060 (2018). (PMID: 30498218626532610.1038/s41467-018-07564-5)
      Zhang, M. et al. Structure of the mechanosensitive OSCA channels. Nat. Struct. Mol. Biol. 25, 850–858 (2018). (PMID: 3019059710.1038/s41594-018-0117-6)
      Maity, K. et al. Cryo-EM structure of OSCA1. 2 from Oryza sativa elucidates the mechanical basis of potential membrane hyperosmolality gating. Proc. Natl Acad. Sci. USA 116, 14309–14318 (2019). (PMID: 31227607662880410.1073/pnas.1900774116)
      Brunner, J. D., Lim, N. K., Schenck, S., Duerst, A. & Dutzler, R. X-ray structure of a calcium-activated TMEM16 lipid scramblase. Nature 516, 207–212 (2014). (PMID: 2538353110.1038/nature13984)
      Pedemonte, N. & Galietta, L. J. Structure and function of TMEM16 proteins (anoctamins). Physiol. Rev. 94, 419–459 (2014). (PMID: 2469235310.1152/physrev.00039.2011)
      Kawashima, Y. et al. Mechanotransduction in mouse inner ear hair cells requires transmembrane channel–like genes. J. Clin. Invest. 121, 4796–4809 (2011). (PMID: 22105175322307210.1172/JCI60405)
      Pan, B. et al. TMC1 forms the pore of mechanosensory transduction channels in vertebrate inner ear hair cells. Neuron 99, 736–753.e6 (2018). (PMID: 30138589636053310.1016/j.neuron.2018.07.033)
      Jeong, H. et al. Structures of the TMC-1 complex illuminate mechanosensory transduction. Nature 610, 796–803 (2022). (PMID: 36224384960586610.1038/s41586-022-05314-8)
      Hartzell, C., Putzier, I. & Arreola, J. Calcium-activated chloride channels. Annu. Rev. Physiol. 67, 719–758 (2005). (PMID: 1570997610.1146/annurev.physiol.67.032003.154341)
      Martinac, B., Adler, J. & Kung, C. Mechanosensitive ion channels of E. coli activated by amphipaths. Nature 348, 261–263 (1990). (PMID: 170030610.1038/348261a0)
      Zheng, W. et al. TMEM63 proteins function as monomeric high-threshold mechanosensitive ion channels. Neuron 111, 3195–3210.e7 (2023). (PMID: 3754303610.1016/j.neuron.2023.07.006)
      Cox, C. D., Zhang, Y., Zhou, Z., Walz, T. & Martinac, B. Cyclodextrins increase membrane tension and are universal activators of mechanosensitive channels. Proc. Natl Acad. Sci. USA 118, e2104820118 (2021). (PMID: 34475213843353310.1073/pnas.2104820118)
      Zhang, Y., Angiulli, G., Martinac, B., Cox, C. D. & Walz, T. Cyclodextrins for structural and functional studies of mechanosensitive channels. J. Struct. Biol. X 5, 100053 (2021). (PMID: 348161188593449)
      Zhang, Y. et al. Visualization of the mechanosensitive ion channel MscS under membrane tension. Nature 590, 509–514 (2021). (PMID: 3356881310.1038/s41586-021-03196-w)
      Jojoa-Cruz, S., Dubin, A. E., Lee, W.-H. & Ward, A. Structure-guided mutagenesis of OSCAs reveals differential activation to mechanical stimuli. eLife 12, RP93147 (2023).
      Zhang, M., Shan, Y., Cox, C. D. & Pei, D. A mechanical-coupling mechanism in OSCA/TMEM63 channel mechanosensitivity. Nat. Commun. 14, 3943 (2023). (PMID: 374027341031972510.1038/s41467-023-39688-8)
      Maingret, F., Patel, A. J., Lesage, F., Lazdunski, M. & Honoré, E. Lysophospholipids open the two-pore domain mechano-gated K+ channels TREK-1 and TRAAK. J. Biol. Chem. 275, 10128–10133 (2000). (PMID: 1074469410.1074/jbc.275.14.10128)
      Nomura, T. et al. Differential effects of lipids and lyso-lipids on the mechanosensitivity of the mechanosensitive channels MscL and MscS. Proc. Natl Acad. Sci. USA 109, 8770–8775 (2012). (PMID: 22586095336515110.1073/pnas.1200051109)
      Guo, Y. R. & MacKinnon, R. Structure-based membrane dome mechanism for Piezo mechanosensitivity. eLife 6, e33660 (2017). (PMID: 29231809578850410.7554/eLife.33660)
      Yao, X., Fan, X. & Yan, N. Cryo-EM analysis of a membrane protein embedded in the liposome. Proc. Natl Acad. Sci. USA 117, 18497–18503 (2020). (PMID: 32680969741419510.1073/pnas.2009385117)
      Melville, Z., Kim, K., Clarke, O. B. & Marks, A. R. High-resolution structure of the membrane-embedded skeletal muscle ryanodine receptor. Structure 30, 172–180.e3 (2022). (PMID: 3446975510.1016/j.str.2021.08.001)
      Yang, X. et al. Structure deformation and curvature sensing of PIEZO1 in lipid membranes. Nature 604, 377–383 (2022). (PMID: 3538822010.1038/s41586-022-04574-8)
      Tao, X., Zhao, C. & MacKinnon, R. Membrane protein isolation and structure determination in cell-derived membrane vesicles. Proc. Natl Acad. Sci. USA 120, e2302325120 (2023). (PMID: 370980561016096910.1073/pnas.2302325120)
      Qin, Y. et al. Cryo-EM structure of TMEM63C suggests it functions as a monomer. Nat. Commun. 14, 7265 (2023). (PMID: 379455681063620410.1038/s41467-023-42956-2)
      Brohawn, S. G., Campbell, E. B. & MacKinnon, R. Physical mechanism for gating and mechanosensitivity of the human TRAAK K + channel. Nature 516, 126–130 (2014). (PMID: 25471887468236710.1038/nature14013)
      Kalienkova, V. et al. Stepwise activation mechanism of the scramblase nhTMEM16 revealed by cryo-EM. eLife 8, e44364 (2019). (PMID: 30785398641420010.7554/eLife.44364)
      Arndt, M. et al. Structural basis for the activation of the lipid scramblase TMEM16F. Nat. Commun. 13, 6692 (2022). (PMID: 36335104963710210.1038/s41467-022-34497-x)
      Falzone, M. E. et al. TMEM16 scramblases thin the membrane to enable lipid scrambling. Nat. Commun. 13, 2604 (2022). (PMID: 35562175909570610.1038/s41467-022-30300-z)
      Falzone, M. E. et al. TMEM16 scramblases thin the membrane to enable lipid scrambling. Biophys. J. 121, 305a–306a (2022). (PMID: 10.1016/j.bpj.2021.11.1231)
      Jojoa-Cruz, S., Burendei, B., Lee, W.-H. & Ward, A. B. Structure of mechanically activated ion channel OSCA2. 3 reveals mobile elements in the transmembrane domain. Structure 32, 157–167.e5 (2024). (PMID: 3810354710.1016/j.str.2023.11.009)
      Wu, X., Shang, T., Lü, X., Luo, D. & Yang, D. A monomeric structure of human TMEM63A protein. Proteins https://doi.org/10.1002/prot.26660 (2024).
      Hamill, O. P. & Martinac, B. Molecular basis of mechanotransduction in living cells. Physiol. Rev. 81, 685–740 (2001). (PMID: 1127434210.1152/physrev.2001.81.2.685)
      Ballesteros, A., Fenollar-Ferrer, C. & Swartz, K. J. Structural relationship between the putative hair cell mechanotransduction channel TMC1 and TMEM16 proteins. eLife 7, e38433 (2018). (PMID: 30063209606789010.7554/eLife.38433)
      Lim, N. K., Lam, A. K. & Dutzler, R. Independent activation of ion conduction pores in the double-barreled calcium-activated chloride channel TMEM16A. J. Gen. Physiol. 148, 375–392 (2016). (PMID: 27799318508993410.1085/jgp.201611650)
      Whitlock, J. M. & Hartzell, H. C. A Pore Idea: the ion conduction pathway of TMEM16/ANO proteins is composed partly of lipid. Pflügers Archiv. Eur. J. Physiol. 468, 455–473 (2016). (PMID: 10.1007/s00424-015-1777-2)
      Jiang, T., Yu, K., Hartzell, H. C. & Tajkhorshid, E. Lipids and ions traverse the membrane by the same physical pathway in the nhTMEM16 scramblase. eLife 6, e28671 (2017). (PMID: 28917060562801610.7554/eLife.28671)
      Walujkar, S. et al. In silico electrophysiology of inner-ear mechanotransduction channel TMC1 models. Preprint at bioRxiv https://doi.org/10.1101/2021.09.17.460860 (2021).
      Goehring, A. et al. Screening and large-scale expression of membrane proteins in mammalian cells for structural studies. Nat. Protoc. 9, 2574–2585 (2014). (PMID: 25299155429117510.1038/nprot.2014.173)
      Bayburt, T. H. & Sligar, S. G. Membrane protein assembly into nanodiscs. FEBS Lett. 584, 1721–1727 (2010).
      Zheng, S. Q. et al. MotionCor2: anisotropic correction of beam-induced motion for improved cryo-electron microscopy. Nat. Methods 14, 331–332 (2017). (PMID: 28250466549403810.1038/nmeth.4193)
      Rohou, A. & Grigorieff, N. CTFFIND4: fast and accurate defocus estimation from electron micrographs. J. Struct. Biol. 192, 216–221 (2015). (PMID: 26278980676066210.1016/j.jsb.2015.08.008)
      Zivanov, J. et al. New tools for automated high-resolution cryo-EM structure determination in RELION-3. eLife 7, e42166 (2018). (PMID: 30412051625042510.7554/eLife.42166)
      Punjani, A., Rubinstein, J. L., Fleet, D. J. & Brubaker, M. A. cryoSPARC: algorithms for rapid unsupervised cryo-EM structure determination. Nat. Methods 14, 290–296 (2017). (PMID: 2816547310.1038/nmeth.4169)
      Jumper, J. et al. Highly accurate protein structure prediction with AlphaFold. Nature 596, 583–589 (2021). (PMID: 34265844837160510.1038/s41586-021-03819-2)
      Pettersen, E. F. et al. UCSF Chimera—a visualization system for exploratory research and analysis. J. Comput. Chem. 25, 1605–1612 (2004). (PMID: 1526425410.1002/jcc.20084)
      Emsley, P. & Cowtan, K. Coot: model-building tools for molecular graphics. Acta Crystallogr. D. Biol. Crystallogr. 60, 2126–2132 (2004). (PMID: 1557276510.1107/S0907444904019158)
      Adams, P. D. et al. PHENIX: building new software for automated crystallographic structure determination. Acta Crystallogr. D Biol. Crystallogr. 58, 1948–1954 (2002). (PMID: 1239392710.1107/S0907444902016657)
      Smart, O. S., Neduvelil, J. G., Wang, X., Wallace, B. A. & Sansom, M. S. P. HOLE: a program for the analysis of the pore dimensions of ion channel structural models. J. Mol. Graph Model 14, 354–360 (1996). (PMID: 10.1016/S0263-7855(97)00009-X)
      Pravda, L. et al. MOLEonline: a web-based tool for analyzing channels, tunnels and pores (2018). Nucleic Acids Res. 46, W368–W373 (2018). (PMID: 29718451603084710.1093/nar/gky309)
      Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph Model 14, 33–38 (1996). (PMID: 10.1016/0263-7855(96)00018-5)
      Pettersen, E. F. et al. UCSF ChimeraX: structure visualization for researchers, educators, and developers. Protein Sci. 30, 70–82 (2021). (PMID: 3288110110.1002/pro.3943)
      Colom, A. et al. A fluorescent membrane tension probe. Nat. Chem. 10, 1118–1125 (2018). (PMID: 30150727619743310.1038/s41557-018-0127-3)
      Delcour, A., Martinac, B., Adler, J. & Kung, C. Modified reconstitution method used in patch-clamp studies of Escherichia coli ion channels. Biophys. J. 56, 631–636 (1989). (PMID: 2477074128051610.1016/S0006-3495(89)82710-9)
      Wu, E. L. et al. CHARMM-GUI Membrane Builder toward realistic biological membrane simulations. J. Comput. Chem. 35, 1997–2004 (2014). (PMID: 25130509416579410.1002/jcc.23702)
      Lomize, M. A., Pogozheva, I. D., Joo, H., Mosberg, H. I. & Lomize, A. L. OPM database and PPM web server: resources for positioning of proteins in membranes. Nucleic Acids Res. 40, D370–D376 (2012). (PMID: 2189089510.1093/nar/gkr703)
      Van Der Spoel, D. et al. GROMACS: fast, flexible, and free. J. Comput. Chem. 26, 1701–1718 (2005). (PMID: 1621153810.1002/jcc.20291)
      Huang, J. et al. CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat. Methods 14, 71–73 (2017). (PMID: 2781965810.1038/nmeth.4067)
      Hess, B., Bekker, H., Berendsen, H. J. C. & Fraaije, J. G. E. M. LINCS: a linear constraint solver for molecular simulations. J. Comput. Chem. 18, 1463–1472 (1997). (PMID: 10.1002/(SICI)1096-987X(199709)18:12<1463::AID-JCC4>3.0.CO;2-H)
      Darden, T., York, D. & Pedersen, L. Particle mesh Ewald—an N.log(N) method for Ewald sums in large systems. J. Chem. Phys. 98, 10089–10092 (1993). (PMID: 10.1063/1.464397)
      Verlet, L. Computer experiments on classical fluids. I. Thermodynamical properties of Lennard-Jones molecules. Phys. Rev. 159, 98 (1967). (PMID: 10.1103/PhysRev.159.98)
      Berendsen, H. J. C., Postma, J. P. M., Vangunsteren, W. F., Dinola, A. & Haak, J. R. Molecular-dynamics with coupling to an external bath. J. Chem. Phys. 81, 3684–3690 (1984). (PMID: 10.1063/1.448118)
      Bussi, G., Donadio, D. & Parrinello, M. Canonical sampling through velocity rescaling. J. Chem. Phys. 126, 014101 (2007). (PMID: 1721248410.1063/1.2408420)
      Roux, B. The membrane potential and its representation by a constant electric field in computer simulations. Biophys. J. 95, 4205–4216 (2008). (PMID: 18641071256793910.1529/biophysj.108.136499)
      Michaud-Agrawal, N., Denning, E. J., Woolf, T. B. & Beckstein, O. Software news and updates MDAnalysis: a toolkit for the analysis of molecular dynamics simulations. J. Comput. Chem. 32, 2319–2327 (2011). (PMID: 21500218314427910.1002/jcc.21787)
      Wickham, H. A layered grammar of graphics. J. Comput. Graph. Stat. 19, 3–28 (2010). (PMID: 10.1198/jcgs.2009.07098)
    • Accession Number:
      0 (Anoctamins)
      0 (Calcium Channels)
      0 (Lipids)
      0 (Liposomes)
      0 (TMEM63A protein, human)
      0 (TMEM63B protein, human)
    • Publication Date:
      Date Created: 20240403 Date Completed: 20240425 Latest Revision: 20240501
    • Publication Date:
      20240502
    • Accession Number:
      10.1038/s41586-024-07256-9
    • Accession Number:
      38570680