A comprehensive approach to characterize navigation instruments for magnetic guidance in biological systems.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
    • Publication Information:
      Original Publication: London : Nature Publishing Group, copyright 2011-
    • Subject Terms:
    • Abstract:
      Achieving non-invasive spatiotemporal control over cellular functions, tissue organization, and behavior is a desirable aim for advanced therapies. Magnetic fields, due to their negligible interaction with biological matter, are promising for in vitro and in vivo applications, even in deep tissues. Particularly, the remote manipulation of paramagnetic (including superparamagnetic and ferromagnetic, all with a positive magnetic susceptibility) entities through magnetic instruments has emerged as a promising approach across various biological contexts. However, variations in the properties and descriptions of these instruments have led to a lack of reproducibility and comparability among studies. This article addresses the need for standardizing the characterization of magnetic instruments, with a specific focus on their ability to control the movement of paramagnetic objects within organisms. While it is well known that the force exerted on magnetic particles depends on the spatial variation (gradient) of the magnetic field, the magnitude of the field is often overlooked in the literature. Therefore, we comprehensively analyze and discuss both actors and propose a novel descriptor, termed 'effective gradient', which combines both dependencies. To illustrate the importance of both factors, we characterize different magnet systems and relate them to experiments involving superparamagnetic nanoparticles. This standardization effort aims to enhance the reproducibility and comparability of studies utilizing magnetic instruments for biological applications.
      (© 2024. The Author(s).)
    • References:
      Munoz, F., Alici, G., Weihua Li, H. Z. & Sitti, M. Analysis of magnetic interaction in remotely controlled magnetic devices and its application to a capsule robot for drug delivery. IEEE/ASME Trans. Mechatron. 23, 298 (2018). (PMID: 10.1109/TMECH.2017.2764902)
      Swain, P. The future of wireless capsule endoscopy. World J. Gastroenterol. 14, 4142 (2008). (PMID: 10.3748/wjg.14.4142186366582725374)
      Sun, Y., Yu, J. & Wang, X. Field-Driven Micro and Nanorobots for Biology and Medicine (Springer, 2022). (PMID: 10.1007/978-3-030-80197-7)
      Koleoso, M. et al. Micro/nanoscale magnetic robots for biomedical applications. Mater. Today Bio 8, 100085. https://doi.org/10.1016/j.mtbio.2020.100085 (2020). (PMID: 10.1016/j.mtbio.2020.100085332999817702192)
      Yang, Z. & Zhang, L. Magnetic actuation systems for miniature robots: A review. Adv. Intell. Syst. 2000082, 1–18 (2020).
      Shao, Y. et al. Study on magnetic control systems of micro-robots. Front. Neurosci. 15, 736730. https://doi.org/10.3389/fnins.2021.736730 (2021). (PMID: 10.3389/fnins.2021.736730345122568432292)
      Shapiro, B. et al. Open challenges in magnetic drug targeting. WIREs Nanomed. Nanobiotechnol. 7, 446–457. https://doi.org/10.1002/wnan.1311 (2015). (PMID: 10.1002/wnan.1311)
      Tietze, R. et al. Magnetic nanoparticle-based drug delivery for cancer therapy. Biochem. Biophys. Res. Commun. 468, 463–470. https://doi.org/10.1016/j.bbrc.2015.08.022 (2015). (PMID: 10.1016/j.bbrc.2015.08.02226271592)
      Attia, M. F., Anton, N., Wallyn, J., Omran, Z. & Vandamme, T. F. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. J. Pharm. Pharmacol. 71, 1185–1198. https://doi.org/10.1111/jphp.13098 (2019). (PMID: 10.1111/jphp.1309831049986)
      Dobson, J. & Rinaldi, C. Nanomagnetic Actuation of Cell Surface Receptors: Basic Principles and Applications (CRC Press, 2018). (PMID: 10.1201/9781315356525)
      Rajan, A. & Sahu, N. Review on magnetic nanoparticle-mediated hyperthermia for cancer therapy. J. Nanopart. Res. 22, 319. https://doi.org/10.1007/s11051-020-05045-9 (2020). (PMID: 10.1007/s11051-020-05045-9)
      Obaidat, I. M., Issa, B. & Haik, Y. Magnetic properties of magnetic nanoparticles for efficient hyperthermia. Nanomaterials 5, 63–89. https://doi.org/10.3390/nano5010063 (2015). (PMID: 10.3390/nano5010063283470005312856)
      Day, N. B., Wixson, W. C. & Shields, C. W. IV. Magnetic systems for cancer immunotherapy. Acta Pharm. Sin. B 11, 2172–2196. https://doi.org/10.1016/j.apsb.2021.03.023 (2021). (PMID: 10.1016/j.apsb.2021.03.023345225838424374)
      Chansoria, P., Liu, H., Christiansen, M. G., Schürle-Finke, S. & Zenobi-Wong, M. Untethered: Using remote magnetic fields for regenerative medicine. Trends Biotechnol. 41, 615–631. https://doi.org/10.1016/j.tibtech.2022.09.003 (2023). (PMID: 10.1016/j.tibtech.2022.09.00336220708)
      Bongaerts, M. et al. Parallelized manipulation of adherent living cells by magnetic nanoparticles-mediated forces. Int. J. Mol. Sci. https://doi.org/10.3390/ijms21186560 (2020). (PMID: 10.3390/ijms21186560329117457555211)
      Plen, R. et al. Bioengineering 3d neural networks using magnetic manipulations. Adv. Funct. Mater. 32, 2204925. https://doi.org/10.1002/adfm.202204925 (2022). (PMID: 10.1002/adfm.202204925)
      De Vincentiis, S. et al. Extremely low forces induce extreme axon growth. J. Neurosci. 40, 4997–5007. https://doi.org/10.1523/jneurosci.3075-19.2020 (2020). (PMID: 10.1523/jneurosci.3075-19.2020324443847314409)
      Dhillon, K. et al. Directional control of neurite outgrowth: Emerging technologies for Parkinson’s disease using magnetic nanoparticles and magnetic field gradients. J. R. Soc. Interface 19, 20220576. https://doi.org/10.1098/rsif.2022.0576 (2022). (PMID: 10.1098/rsif.2022.0576363494449653228)
      Parfenov, V. A. et al. Magnetic levitational bioassembly of 3d tissue construct in space. Sci. Adv. 6, eaba4174. https://doi.org/10.1126/sciadv.aba4174 (2020). (PMID: 10.1126/sciadv.aba4174327430687363443)
      Lee, E. A. et al. Application of magnetic nanoparticle for controlled tissue assembly and tissue engineering. Arch. Pharm. Res. 37, 120. https://doi.org/10.1007/s12272-013-0303-3 (2014). (PMID: 10.1007/s12272-013-0303-324310100)
      Friedrich, R., Cicha, I. & Alexiou, C. Iron oxide nanoparticles in regenerative medicine and tissue engineering. Nanomaterials 11, 2337. https://doi.org/10.3390/nano11092337 (2021). (PMID: 10.3390/nano11092337345786518466586)
      Goranov, V. et al. 3d patterning of cells in magnetic scaffolds for tissue engineering. Sci. Rep. 10, 2289. https://doi.org/10.1038/s41598-020-58738-5 (2020). (PMID: 10.1038/s41598-020-58738-5320419947010825)
      Hauser, A. K., Wydra, R. J., Stocke, N. A., Anderson, K. W. & Hilt, J. Z. Magnetic nanoparticles and nanocomposites for remote controlled therapies. J. Control. Release 219, 76–94. https://doi.org/10.1016/j.jconrel.2015.09.039 (2015). (PMID: 10.1016/j.jconrel.2015.09.039264076704669063)
      Etoc, F. et al. Subcellular control rac-gtpase signalling by magnetogenetic manipulation inside living cells. Nat. Nanotechnol. 8, 193–198. https://doi.org/10.1038/nnano.2013.23 (2013). (PMID: 10.1038/nnano.2013.2323455985)
      Raudzus, F. et al. Magnetic spatiotemporal control of sos1 coupled nanoparticles for guided neurite growth in dopaminergic single cells. Sci. Rep. 10, 22452. https://doi.org/10.1038/s41598-020-80253-w (2020). (PMID: 10.1038/s41598-020-80253-w333844477775457)
      Lee, J. U. et al. Non-contact long-range magnetic stimulation of mechanosensitive ion channels in freely moving animals. Nat. Mater. 20, 1029–1036. https://doi.org/10.1038/s41563-020-00896-y (2021). (PMID: 10.1038/s41563-020-00896-y33510447)
      Zahn, M. Magnetic fluid and nanoparticle applications to nanotechnology. J. Nanopart. Res. 3, 25 (2001). (PMID: 10.1023/A:1011497813424)
      Panina, L. V. et al. Spatial manipulation of particles and cells at micro- and nanoscale via magnetic forces. Cells 11, 950. https://doi.org/10.3390/cells11060950 (2022). (PMID: 10.3390/cells11060950353264018946034)
      Garello, F., Svenskaya, Y., Parakhonskiy, B. & Filippi, M. Micro/nanosystems for magnetic targeted delivery of bioagents. Pharmaceutics 14, 1132. https://doi.org/10.3390/pharmaceutics14061132 (2022). (PMID: 10.3390/pharmaceutics14061132357457059230665)
      Andrä, W. & Nowak, H. Magnetism in Medicine: A Handbook (Wiley, 2007).
      Blümler, P. Magnetic guiding with permanent magnets: Concept, realization and applications to nanoparticles and cells. Cells 10, 2708. https://doi.org/10.3390/cells10102708 (2021). (PMID: 10.3390/cells10102708346856888535073)
      Cao, Q. L. et al. Recent advances in manipulation of micro- and nano-objects with magnetic fields at small scales. Mater. Horiz. 7, 638–666. https://doi.org/10.1039/c9mh00714h (2020). (PMID: 10.1039/c9mh00714h)
      Komaee, A. & Shapiro, B. Steering a ferromagnetic particle by optimal magnetic feedback control. IEEE Trans. Contr. Syst. Technol. 20, 1011–1024. https://doi.org/10.1109/TCST.2011.2152842 (2012). (PMID: 10.1109/TCST.2011.2152842)
      Sliker, L., Ciuti, G., Rentschler, M. & Menciassi, A. Magnetically driven medical devices: A review. Expert Rev. Med. Devices 12, 737–752. https://doi.org/10.1586/17434440.2015.1080120 (2015). (PMID: 10.1586/17434440.2015.108012026295303)
      Liu, Y. L., Chen, D., Shang, P. & Yin, D. C. A review of magnet systems for targeted drug delivery. J. Control. Release 302, 90–104. https://doi.org/10.1016/j.jconrel.2019.03.031 (2019). (PMID: 10.1016/j.jconrel.2019.03.03130946854)
      Knopp, T. & Buzug, T. M. Magnetic Particle Imaging: An Introduction to Imaging Principles and Scanner Instrumentation (Springer, 2012). (PMID: 10.1007/978-3-642-04199-0)
      Krishnan, K. M. Fundamentals and Applications of Magnetic Materials (Oxford University Press, 2016). (PMID: 10.1093/acprof:oso/9780199570447.001.0001)
      Bean, C. P. & Livingston, J. D. Superparamagnetism. J. Appl. Phys. 30, 120S-129S (1959). (PMID: 10.1063/1.2185850)
      Kemgang, E. & Messina, R. Columnar dipolar clusters defying gravity. Phys. Rev. E 105, L012602. https://doi.org/10.1103/PhysRevE.105.L012602 (2022). (PMID: 10.1103/PhysRevE.105.L01260235193270)
      Odenbach, S. Colloidal Magnetic Fluids: Basics, Development and Application of Ferrofluids, vol. 763 of Lecture Notes in Physics (Springer, 2009). (PMID: 10.1007/978-3-540-85387-9)
      Caizer, C. & Rai, M. Magnetic Nanoparticles in Human Health and Medicine: Current Medical Applications and Alternative Therapy of Cancer (Wiley Blackwell, 2022).
      Bender, P. et al. Relating magnetic properties and high hyperthermia performance of iron oxide nanoflowers. J. Phys. Chem. C 122, 3068–3077. https://doi.org/10.1021/acs.jpcc.7b11255 (2018). (PMID: 10.1021/acs.jpcc.7b11255)
      Jackson, J. D. Classical Electrodynamics (Wiley, 1975).
      Baun, O. & Blümler, P. Permanent magnet system to guide superparamagnetic particles. J. Magn. Magn. Mater. 439, 294–304. https://doi.org/10.1016/j.jmmm.2017.05.001 (2017). (PMID: 10.1016/j.jmmm.2017.05.001)
      Riggio, C. et al. The orientation of the neuronal growth process can be directed via magnetic nanoparticles under an applied magnetic field. Nanomed. Nanotechnol. Biol. Med. 10, 1549–1558. https://doi.org/10.1016/j.nano.2013.12.008 (2014). (PMID: 10.1016/j.nano.2013.12.008)
      Dziob, D., Ramian, J., Ramian, J., Lisowski, B. & Laska, J. Design and construction of a chamber enabling the observation of living cells in the field of a constant magnetic force. Cells 10, 3339. https://doi.org/10.3390/cells10123339 (2021). (PMID: 10.3390/cells10123339349438468699672)
      Babincova, M. & Babinec, P. Magnetic drug delivery and targeting: Principles and applications. Biomed. Pap. Olomouc 153, 243–250. https://doi.org/10.5507/bp.2009.042 (2009). (PMID: 10.5507/bp.2009.042)
      Eberbeck, D. et al. Multicore magnetic nanoparticles for magnetic particle imaging. IEEE Trans. Magn. 49, 269–274. https://doi.org/10.1109/tmag.2012.2226438 (2013). (PMID: 10.1109/tmag.2012.2226438)
    • Grant Information:
      213555243 Deutsche Forschungsgemeinschaft; 22K06430 Japan Society for the Promotion of Science
    • Contributed Indexing:
      Keywords: Ferrofluid; Force; Gradient; Magnetic field; Magnetic flux density; Motion; Nanoparticle; SPIO; Steering; Superparamagnetic
    • Publication Date:
      Date Created: 20240403 Date Completed: 20240405 Latest Revision: 20240408
    • Publication Date:
      20240408
    • Accession Number:
      PMC10991419
    • Accession Number:
      10.1038/s41598-024-58091-x
    • Accession Number:
      38570608