Impaired erythropoietin response to hypoxia in type 2 diabetes.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer Verlag Country of Publication: Germany NLM ID: 9200299 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-5233 (Electronic) Linking ISSN: 09405429 NLM ISO Abbreviation: Acta Diabetol Subsets: MEDLINE
    • Publication Information:
      Publication: Berlin : Springer Verlag
      Original Publication: Berlin : Springer International, c1991-
    • Subject Terms:
    • Abstract:
      Aims: Patients with type 2 diabetes have a 20% lower total blood volume than age- and weight-matched healthy adults, suggesting a reduced capacity to transport oxygen in this population. Intermittent hypoxia, consisting of alternating short bouts of breathing hypoxic and normoxic air, increases erythropoietin levels, the hormone regulating red blood cell production, in young and older adults. The objective of this study was to determine the effect of a single session of intermittent hypoxia on erythropoietin levels and hemoglobin mass, the absolute mass of hemoglobin contained in red blood cells, in patients with type 2 diabetes.
      Methods: Ten patients with type 2 diabetes were exposed to an intermittent hypoxia protocol consisting of eight 4-min cycles at a targeted oxygen saturation of 80% interspersed with normoxic cycles to resaturation. Erythropoietin and hemoglobin mass responses to intermittent hypoxia in patients with type 2 diabetes were compared to previously published data from an identical intermittent hypoxia protocol performed in age-matched older adults.
      Results: Intermittent hypoxia increased erythropoietin levels in older adults but did not induce any change in erythropoietin levels in patients with type 2 diabetes (3.2 ± 2.2 vs. 0.2 ± 2.7 mU/ml, p = 0.01). Hemoglobin mass indexed to body weight was 21% lower in patients with type 2 diabetes than in older adults (8.1 ± 1.7 vs. 10.2 ± 2.1 g/kg, p < 0.01).
      Conclusions: These findings suggest an impaired erythropoietin response to decreased oxygen levels in patients with type 2 diabetes, which may contribute to the reduced oxygen transport capacity observed in this population.
      (© 2024. Springer-Verlag Italia S.r.l., part of Springer Nature.)
    • References:
      Schmidt W, Prommer N (2010) Impact of alterations in total hemoglobin mass on VO 2max. Exerc Sport Sci Rev 38(2):68–75. https://doi.org/10.1097/JES.0b013e3181d4957a. (PMID: 10.1097/JES.0b013e3181d4957a20335738)
      Baldi JC, Aoina JL, Whalley GA et al (2006) The effect of type 2 diabetes on diastolic function. Med Sci Sports Exerc 38(8):1384–1388. https://doi.org/10.1249/01.mss.0000228954.90591.95. (PMID: 10.1249/01.mss.0000228954.90591.9516888449)
      Lalande S, Gusso S, Hofman PL, Baldi JC (2008) Reduced leg blood flow during submaximal exercise in type 2 diabetes. Med Sci Sports Exerc 40(4):612–617. (PMID: 10.1249/MSS.0b013e318161aa9918317387)
      Regensteiner JG, Sippel J, McFarling ET, Wolfel EE, Hiatt WR (1995) Effects of non-insulin-dependent diabetes on oxygen consumption during treadmill exercise. Med Sci Sports Exerc 27(6):875–881. (PMID: 10.1249/00005768-199506000-000127658949)
      Mac Ananey O, Malone J, Warmington S, O’Shea D, Green S, Egana M (2011) Cardiac output is not related to the slowed O2 uptake kinetics in type 2 diabetes. Med Sci Sports Exerc 43(6):935–942. https://doi.org/10.1249/MSS.0b013e3182061cdb. (PMID: 10.1249/MSS.0b013e3182061cdb21131874)
      O’Connor E, Green S, Kiely C, O’Shea D, Egana M (2015) Differential effects of age and type 2 diabetes on dynamic vs. peak response of pulmonary oxygen uptake during exercise. J Appl Physiol 118(8):1031–1039. https://doi.org/10.1152/japplphysiol.01040.2014. (PMID: 10.1152/japplphysiol.01040.201425701005)
      Wilkerson DP, Poole DC, Jones AM et al (2011) Older type 2 diabetic males do not exhibit abnormal pulmonary oxygen uptake and muscle oxygen utilization dynamics during submaximal cycling exercise. Am J Physiol Regul Integr Comp Physiol 300(3):R685-692. https://doi.org/10.1152/ajpregu.00479.2010. (PMID: 10.1152/ajpregu.00479.201021178129)
      Lalande S, Hofman PL, Baldi JC (2010) Effect of reduced total blood volume on left ventricular volumes and kinetics in type 2 diabetes. Acta Physiol (Oxf) 199(1):23–30. (PMID: 10.1111/j.1748-1716.2010.02081.x20082608)
      Koponen AS, Peltonen JE, Paivinen MK et al (2013) Low total haemoglobin mass, blood volume and aerobic capacity in men with type 1 diabetes. Eur J Appl Physiol 113(5):1181–1188. https://doi.org/10.1007/s00421-012-2532-4. (PMID: 10.1007/s00421-012-2532-423129089)
      Resnick HE, Foster GL, Bardsley J, Ratner RE (2006) Achievement of american diabetes association clinical practice recommendations among U.S. adults with diabetes, 1999-2002: the national health and nutrition examination survey. Diabetes Care 29(3):531–537. (PMID: 10.2337/diacare.29.03.06.dc05-125416505501)
      Ross R, Blair SN, Arena R et al (2016) Importance of assessing cardiorespiratory fitness in clinical practice: a case for fitness as a clinical vital sign: a scientific statement from the american heart association. Circulation 134(24):e653–e699. https://doi.org/10.1161/CIR.0000000000000461. (PMID: 10.1161/CIR.000000000000046127881567)
      Jelkmann W (2011) Regulation of erythropoietin production. J Physiol 589(Pt 6):1251–1258. https://doi.org/10.1113/jphysiol.2010.195057. (PMID: 10.1113/jphysiol.2010.19505721078592)
      Craig KJ, Williams JD, Riley SG et al (2005) Anemia and diabetes in the absence of nephropathy. Diabetes Care 28(5):1118–1123. (PMID: 10.2337/diacare.28.5.111815855576)
      Mojiminiyi OA, Abdella NA, Zaki MY, El Gebely SA, Mohamedi HM, Aldhahi WA (2006) Prevalence and associations of low plasma erythropoietin in patients with type 2 diabetes mellitus. Diabet Med 23(8):839–844. https://doi.org/10.1111/j.1464-5491.2006.01893.x. (PMID: 10.1111/j.1464-5491.2006.01893.x16911620)
      Bosman DR, Osborne CA, Marsden JT, Macdougall IC, Gardner WN, Watkins PJ (2002) Erythropoietin response to hypoxia in patients with diabetic autonomic neuropathy and non-diabetic chronic renal failure. Diabet Med 19(1):65–69. https://doi.org/10.1046/j.1464-5491.2002.00634.x. (PMID: 10.1046/j.1464-5491.2002.00634.x11869305)
      Jelkmann W (2016) Erythropoietin. Front Horm Res 47:115–127. https://doi.org/10.1159/000445174. (PMID: 10.1159/00044517427348128)
      Schmidt W, Eckardt KU, Hilgendorf A, Strauch S, Bauer C (1991) Effects of maximal and submaximal exercise under normoxic and hypoxic conditions on serum erythropoietin level. Int J Sports Med 12(5):457–461. https://doi.org/10.1055/s-2007-1024713. (PMID: 10.1055/s-2007-10247131752711)
      Wojan F, Stray-Gundersen S, Nagel MJ, Lalande S (2021) Short exposure to intermittent hypoxia increases erythropoietin levels in healthy individuals. J Appl Physiol 130(6):1955–1960. https://doi.org/10.1152/japplphysiol.00941.2020. (PMID: 10.1152/japplphysiol.00941.202033955265)
      Wojan F, Stray-Gundersen S, Massoudian SD, Lalande S (2023) Brief exposure to intermittent hypoxia increases erythropoietin levels in older adults. J Appl Physiol 135(1):88–93. https://doi.org/10.1152/japplphysiol.00172.2023. (PMID: 10.1152/japplphysiol.00172.202337262104)
      Lalande S, Kelsey JW, Joyner MJ, Johnson BD (2012) Determination of blood volume by pulse CO-oximetry. Physiol Meas 33(1):19–27. https://doi.org/10.1088/0967-3334/33/1/19. (PMID: 10.1088/0967-3334/33/1/1922156221)
      Schmidt W, Prommer N (2005) The optimised CO-rebreathing method: a new tool to determine total haemoglobin mass routinely. Eur J Appl Physiol 95(5–6):486–495. https://doi.org/10.1007/s00421-005-0050-3. (PMID: 10.1007/s00421-005-0050-316222540)
      Burge CM, Skinner SL (1995) Determination of hemoglobin mass and blood volume with CO: evaluation and application of a method. J Appl Physiol 79(2):623–631. (PMID: 10.1152/jappl.1995.79.2.6237592227)
      Semenza GL (2004) O2-regulated gene expression: transcriptional control of cardiorespiratory physiology by HIF-1. J Appl Physiol 96(3):1173–1177. https://doi.org/10.1152/japplphysiol.00770.2003. (PMID: 10.1152/japplphysiol.00770.200314766767)
      Catrina SB, Zheng X (2021) Hypoxia and hypoxia-inducible factors in diabetes and its complications. Diabetologia 64(4):709–716. https://doi.org/10.1007/s00125-021-05380-z. (PMID: 10.1007/s00125-021-05380-z334968207940280)
      Duennwald T, Gatterer H, Groop PH, Burtscher M, Bernardi L (2013) Effects of a single bout of interval hypoxia on cardiorespiratory control and blood glucose in patients with type 2 diabetes. Diabetes Care 36(8):2183–2189. https://doi.org/10.2337/dc12-2113. (PMID: 10.2337/dc12-2113235365853714488)
      Liu X, Xu D, Hall JR et al (2017) Enhanced cerebral perfusion during brief exposures to cyclic intermittent hypoxemia. J Appl Physiol 123(6):1689–1697. https://doi.org/10.1152/japplphysiol.00647.2017. (PMID: 10.1152/japplphysiol.00647.201729074711)
      Iwamoto E, Hanson BE, Bock JM, Casey DP (2020) Intermittent hypoxia enhances shear-mediated dilation of the internal carotid artery in young adults. J Appl Physiol 129(3):603–611. https://doi.org/10.1152/japplphysiol.00274.2020. (PMID: 10.1152/japplphysiol.00274.202032702263)
      Stray-Gundersen S, Massoudian SD, Wojan F, Tanaka H, Lalande S (2022) Hypoxic preconditioning reduces endothelial ischemia-reperfusion injury in older adults. Am J Physiol Regul Integr Comp Physiol 323(5):R832–R838. https://doi.org/10.1152/ajpregu.00200.2022. (PMID: 10.1152/ajpregu.00200.202236222863)
      Zhang P, Downey HF, Chen S, Shi X (2014) Two-week normobaric intermittent hypoxia exposures enhance oxyhemoglobin equilibrium and cardiac responses during hypoxemia. Am J Physiol Regul Integr Comp Physiol 307(6):R721-730. https://doi.org/10.1152/ajpregu.00191.2014. (PMID: 10.1152/ajpregu.00191.201425056104)
      Petrofsky J, Prowse M, Remigio W et al (2009) The use of an isometric handgrip test to show autonomic damage in people with diabetes. Diabetes Technol Ther 11(6):361–368. https://doi.org/10.1089/dia.2008.0094. (PMID: 10.1089/dia.2008.009419459764)
      Sawka MN, Young AJ, Pandolf KB, Dennis RC, Valeri CR (1992) Erythrocyte, plasma, and blood volume of healthy young men. Med Sci Sports Exerc 24(4):447–453. (PMID: 10.1249/00005768-199204000-000091560741)
      Maruyama T, Takashima H, Oguma H et al (2019) Canagliflozin improves erythropoiesis in diabetes patients with anemia of chronic kidney disease. Diabetes Technol Ther 21(12):713–720. https://doi.org/10.1089/dia.2019.0212. (PMID: 10.1089/dia.2019.0212313857246875696)
      Takiyama Y, Harumi T, Watanabe J et al (2011) Tubular injury in a rat model of type 2 diabetes is prevented by metformin: a possible role of HIF-1alpha expression and oxygen metabolism. Diabetes 60(3):981–992. https://doi.org/10.2337/db10-0655. (PMID: 10.2337/db10-0655212823693046859)
    • Contributed Indexing:
      Keywords: Erythropoietin; Hemoglobin mass; Intermittent hypoxia; Type 2 diabetes
    • Molecular Sequence:
      ClinicalTrials.gov NCT05898685
    • Accession Number:
      11096-26-7 (Erythropoietin)
      0 (Hemoglobins)
      0 (EPO protein, human)
      S88TT14065 (Oxygen)
    • Publication Date:
      Date Created: 20240403 Date Completed: 20240617 Latest Revision: 20240703
    • Publication Date:
      20240703
    • Accession Number:
      10.1007/s00592-024-02269-2
    • Accession Number:
      38570345