Advancements of Macrophages Involvement in Pathological Progression of Colitis-Associated Colorectal Cancer and Associated Pharmacological Interventions.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Chinese Journal of Integrated Traditional and Western Medicine Press Country of Publication: China NLM ID: 101181180 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1993-0402 (Electronic) Linking ISSN: 16720415 NLM ISO Abbreviation: Chin J Integr Med Subsets: MEDLINE
    • Publication Information:
      Publication: 2007- : Berlin : Chinese Journal of Integrated Traditional and Western Medicine Press : Springer
      Original Publication: Beijing, China : Watertown, MA : Chinese Association of the Integration of Traditional and Western Medicine : China Academy of Traditional Chinese Medicine ; Distributed by Relaxing Natural Health, [2003]-
    • Subject Terms:
    • Abstract:
      Intestinal macrophages play crucial roles in both intestinal inflammation and immune homeostasis. They can adopt two distinct phenotypes, primarily determined by environmental cues. These phenotypes encompass the classically activated pro-inflammatory M1 phenotype, as well as the alternatively activated anti-inflammatory M2 phenotype. In regular conditions, intestinal macrophages serve to shield the gut from inflammatory harm. However, when a combination of genetic and environmental elements influences the polarization of these macrophages, it can result in an M1/M2 macrophage activation imbalance, subsequently leading to a loss of control over intestinal inflammation. This shift transforms normal inflammatory responses into pathological damage within the intestines. In patients with ulcerative colitis-associated colorectal cancer (UC-CRC), disorders related to intestinal inflammation are closely correlated with an imbalance in the polarization of intestinal M1/M2 macrophages. Therefore, reinstating the equilibrium in M1/M2 macrophage polarization could potentially serve as an effective approach to the prevention and treatment of UC-CRC. This paper aims to scrutinize the clinical evidence regarding Chinese medicine (CM) in the treatment of UC-CRC, the pivotal role of macrophage polarization in UC-CRC pathogenesis, and the potential mechanisms through which CM regulates macrophage polarization to address UC-CRC. Our objective is to offer fresh perspectives for clinical application, fundamental research, and pharmaceutical advancement in UC-CRC.
      (© 2024. The Chinese Journal of Integrated Traditional and Western Medicine Press and Springer-Verlag GmbH Germany, part of Springer Nature.)
    • References:
      Low D, Mino-Kenudson M, Mizoguchi E. Recent advancement in understanding colitis-associated tumorigenesis. Inflamm Bowel Dis 2014;20:2115–2123. (PMID: 2533786610.1097/MIB.0000000000000094)
      Ephraim R, Feehan J, Fraser S, et al. Cancer immunotherapy: the checkpoint between chronic colitis and colorectal cancer. Cancers 2022;14:6131. (PMID: 36551617977699810.3390/cancers14246131)
      Eaden JA, Abrams KR, Mayberry JF. The risk of colorectal cancer in ulcerative colitis: a meta-analysis. Gut 2001;48:526–535. (PMID: 11247898172825910.1136/gut.48.4.526)
      Wang Y, Ding Y, Deng Y, et al. Role of myeloid-derived suppressor cells in the promotion and immunotherapy of colitis-associated cancer. J ImmunoTher Cancer 2020;8:e000609. (PMID: 33051339755510610.1136/jitc-2020-000609)
      Chen Y, Chen Y, Dong W, et al. Immunomodulation of intestinal macrophages and inlammatory bowel disease. Chin J Inflamm Bowel Dis (Chin) 2020;04:344–348.
      Lu L, Liu Y, Li Y, et al. Investigation of the mechanism of action of baicalin in the treatment of ulcerative colitis in mice based on NLRP3-related inflammatory response and intestinal mucosal barrier function. Chin J Tradit Chin Med (Chin) 2022;37:5992–5999.
      Meng X, Ji M, Famg Y, et al. Serum macrophage polarization-related cytokine levels and their significance in patients with inflammatory bowel disease. Gastroenterology 2015;20:538–541.
      Gao Y, Bai D, Zhao Y, et al. LL202 ameliorates colitis against oxidative stress of macrophage by activation of the Nrf2/HO-1 pathway. J Cell Physiol 2018;234:10625–10639. (PMID: 3042648510.1002/jcp.27739)
      Troncone E, Monteleone G. The safety of non-biological treatments in ulcerative colitis. Expert Opin Drug Saf 2017;16:779–789. (PMID: 2860871710.1080/14740338.2017.1340936)
      Chhibba T, Ma C. Is there room for immunomodulators in ulcerative colitis? Expert Opin Biol Ther 2020;20:379–390. (PMID: 3187457810.1080/14712598.2020.1708896)
      Zhang Q, Li H, Wang Z, et al. Characteristics of colorectal cancer TCM evidence patterns and correlation with fecal SDC2 gene methylation. Shandong J Tradit Chin Med (Chin) 2023;42:233–238.
      Zhang Y, Wei J, Xu R, et al. Advances in Chinese medicine for the treatment of inflammation-related colorectal cancer. J Shannxi Univ Tradit Chin Med (Chin) 2022;45:171–174.
      Qin J, Qian C, Jie F, et al. Study on the regulation of intestinal NLRP3 inflammasome in rats with ulcerative colitis by Ulcerative Knotling. Pharm Clin Chin Mater Med (Chin) 2017;33:90–94.
      Ke J, Chen X, Zhong Q, et al. Effect of glycyrrhizic acid on SIRT6-mediated intestinal mucosal renewal in mice. Pharm Clin Chin Mater Med (Chin) 2021;37:69–73.
      Liu L, Meng J. Effect of Astragalus chinensis soup on intestinal bacterialabundance and composition in mice with colitis-associated cancer. Chin J Tradit Chin Med (Chin) 2018;33:1868–1874.
      Wang M, Wang Y. Progress in the study of the origin of embryonic-derived macrophages and their functions in the liver. Chin Clin Med (Chin) 2018;25:123–128.
      Mosser DM, Edwards JP. Exploring the full spectrum of macrophag eactivation. Nat Rev Immunol 2008;8:958–969. (PMID: 19029990272499110.1038/nri2448)
      Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas. J Clin Invest 2012;122:787–795. (PMID: 22378047328722310.1172/JCI59643)
      Wang H, et al. Expression of miR-145 in peripheral blood mononuclear cells from patients with inflammatory bowel disease and the relationship with Th1/Th2 levels. Chin Adv Mod Gen Surg (Chin) 2022;25:574–576.
      Yao Y, Xu X, Jin L. Macrophage polarization in physiological and pathological pregnancy. Front Immunol (Chin) 2019;10:00792. (PMID: 10.3389/fimmu.2019.00792)
      Kang S, Kumanogoh A. The spectrum of macrophage activation by immunometabolism. Int Immunol 2020;32:467–473. (PMID: 3217990010.1093/intimm/dxaa017)
      Xu J, Zhang H, Chen L, et al. Schistosoma japonicum infection induces macrophage polarization. J Biomed Res 2014;28:299–308. (PMID: 25050114410284410.7555/JBR.27.20130072)
      Xie Y, Li Y. Regulation of Th17 cell differentiation and its role in inflammatory bowel disease. Chin J Immunol (Chin) 2021;37:2612–2616.
      Li X. Changes in Th17 cells and IL-6 and IL-17 expression levels in elderly rectal cancer patients [Dissertation]. Dalian: Dalian Medical University; 2014:38.
      Shapouri-Moghaddam A, Mohammadian S, Vazini H, et al. Macrophage plasticity, polarization, and function in health and disease. J Cell Physiol 2018;233:6425–6440. (PMID: 2931916010.1002/jcp.26429)
      Berman J E, Zolla-Pazner S. Control of B cell proliferation: inhibition of responses to B cell mitogens induced by plasma cell tumors. J Immunol 1985;134:2872–2878. (PMID: 258000410.4049/jimmunol.134.5.2872)
      Kurowska-Stolarska M, Stolarski B, Kewin P, et al. IL-33 amplifies thepolarization of alternatively activated macrophages that contribute to airway inflammation. J Immunol 2009;183:6469–6477. (PMID: 1984116610.4049/jimmunol.0901575)
      Zigmond E, Bernshtein B, Friedlander G, et al. Macrophage-restricted interleukin-10 receptor deficiency, but not IL-10 deficiency, causes severe spon taneous colitis. Immunity 2014;40:720–733. (PMID: 2479291310.1016/j.immuni.2014.03.012)
      Sica A, Erreni M, Allavena P, et al. Macrophage polarization in pathology. Cell Mol Life Sci 2015;72:4111–4126. (PMID: 262101521111354310.1007/s00018-015-1995-y)
      Chistiakov DA, Bobryshev YV, Nikiforov NG, et al. RETRACTED: macrophage phenotypic plasticity in atherosclerosis: the associated features and the peculiarities of the expression of inflammatory genes. Int J Cardiol 2015;184:436–445. (PMID: 2575506210.1016/j.ijcard.2015.03.055)
      Martinez FO. Macrophage activation and polarization. Front Bio Sci 2008;13:453.
      Zhao Y, Tian P, Zheng J, et al. Study on the effect of IL-10/TGF-β-induced macrophages on renal ischemia-reperfusion injury. Chin J Organ Transpl (Chin) 2017;38:734–740.
      Wang LX, Zhang SX, Wu HJ, et al. M2b macrophage polarization and its roles in diseases. J Leukoc Biol 2019;106:345–358. (PMID: 3057600010.1002/JLB.3RU1018-378RR)
      Ferrante CJ, Pinhal-Enfield G, Elson G, et al. The adenosine-dependent angiogenic switch of macrophages to an M2-like phenotype is independent of interleukin-4 receptor alpha (IL-4Ralpha) signaling. Inflammation 2013;36:921–931. (PMID: 2350425910.1007/s10753-013-9621-3)
      Na YR, Stakenborg M, Seok SH, et al. Macrophages in intestinal inflammation and resolution: a potential therapeutic target in IBD. Nat Rev Gastr oenterol Hepatol 2019;16:531–543. (PMID: 10.1038/s41575-019-0172-4)
      Liu M, Ye Y, Qin H, et al. Role of macrophages and Wnt pathway in tumorigenesis development. Chem Life 2017;37:719–725.
      Xu Z, Xu H. et al. Study of the role of T lymphocyte subsets in inflammatory bowel disease. J Gastroenterol Hepatol (Chin) 2021;30:454–458.
      Wynn TA, Vannella KM. Macrophages in tissue repair, regeneration, and fibrosis. Immunity 2016;44:450–462. (PMID: 26982353479475410.1016/j.immuni.2016.02.015)
      Lissner D, Schumann M, Batra A, et al. Monocyte and M1 macrophage-induced barrier defect contributes to chronic intestinal inflammation in IBD. Inflamm Bowel Dis 2015;21:1297–1305. (PMID: 25901973)
      Zhang Y, Qiu T, Zhou J, et al. Progress in the study of the regulatory role of macrophage substance metabolism on self-polarization. Shandong Med (Chin) 2021;61:112–115.
      Guan X. Effect of Candida albicans-stimulated keratin-forming cell supernatant on macrophage immune function [Dissertation]. Shenyang: China Medical University; 2018.
      Jia R, Hui Y, Yan S, et al. Progress in the study of the relationship between macrophage M1/M2 type polarization and immune inflammatory diseases. Chin J Immunol (Chin) 2021;37:2791–2797.
      Mai P, Xiao X, Fu Y, et al. Cannabinoid receptor 2 ameliorates ulcerative colitis in mice by regulating the polarization of macrophages. J Xi’an Jiaotong Univ (Med Ed, Chin) 2020;41:210–215.
      Li R, Zhou R, Wang H, et al. Gut microbiota-stimulated cathepsin K secretion mediates TLR4-dependent M2 macrophage polarization and promotes tumor metastasis in colorectal cancer. Cell Death Differ 2019;26:2447–2463. (PMID: 30850734688944610.1038/s41418-019-0312-y)
      Sehgal A, Donaldson DS, Pridans C, et al. The role of CSF1R-dependent macrophages in control of the intestinal stem-cell niche. Nat Commun 2018;9:1272. (PMID: 29593242587185110.1038/s41467-018-03638-6)
      Hume DA, MacDonald KP. Therapeutic applications of macrophage colony-stimulating factor-1 (CSF-1) and antagonists of CSF-1 receptor (CSF-1R) signaling. Blood 2012;119:1810–1820. (PMID: 2218699210.1182/blood-2011-09-379214)
      Dong Y, Yang Q, Niu R, et al. Modulation of tumor-associated macrophages in colitis-associated colorectal cancer. J Cell Physiol 2022;237:4443–4459. (PMID: 3630215310.1002/jcp.30906)
      Mola S, Pandolfo C, Sica A, et al. The macrophages-microbiota interplay in colorectal cancer (CRC)-related inflammation: prognostic and therapeutic significance. Int J Mol Sci 2020;21:6866. (PMID: 32962159755848510.3390/ijms21186866)
      Chen Y, Wang B, Yuan X, et al. Vitexin prevents colitis-associated carcinogenesis in mice through regulating macrophage polarization. Phytomedicine 2021;83:153489. (PMID: 3357191910.1016/j.phymed.2021.153489)
      Zhang X, Feng T, Zhou X, et al. Inactivation of TMEM106A promotes lipopolysaccharide-induced inflammation via the MAPK and NF-kappaB signaling pathways in macrophages. Clin Exp Immunol 2020;203:125–136. (PMID: 33006758774448810.1111/cei.13528)
      Liang Y, Chen Z, Wang W, et al. On the view of positive and evil in the treatment and health care of the Huangdi Neijing. Jilin Chin Med (Chin) 2017;37:1089–1091.
      Ni Y. Correlation of NLR, PLR, PNI with TCM evidence distribution and postoperative prognosis in stage I colon cancer patients [Dissertation]. Nanjing: Nanjing University of Chinese Medicine; 2022.
      Yin L. Preliminary study of gene expression changes in inflammatory bowel cancer and inflammatory cancer transformation models [Dissertation]. Hangzhou: Zhejiang University; 2016.
      Zhang L, Han YJ, Zhang X, et al. Luteolin reduces obesity-associate dinsulin resistance in mice by activating AMPKalpha1 signalling in adipose tissue macrophages. Diabetologia 2016;59:2219–2228. (PMID: 2737764410.1007/s00125-016-4039-8)
      Geng P, Zhu H, Zhou W, et al. Baicalin inhibits influenza A virus infection via promotion of M1 macrophage polarization. Front Pharmacol 2020;11:1298. (PMID: 10.3389/fphar.2020.01298)
      Lu S, Luo Y, Sun G, et al. Ginsenoside compound K attenuates Ox-LDL-mediated macrophage inflammation and foam cell formation via autophagy induction and modulating NF-kappaB, p38, and JNK MAPK signaling. Front Pharmacol 2020;11:567238. (PMID: 33041808752251010.3389/fphar.2020.567238)
      Wang L, Wu W, Zhu X, et al. The ancient Chinese decoction Yuping-feng suppresses orthotopic lewis lung cancer tumor growth through increasing M1 macrophage polarization and CD4(+) T Cell Cytotoxicity. Front Pharmacol 2019;10:1333. (PMID: 31780946685708910.3389/fphar.2019.01333)
      Sun Y, Liu L, Shi X, et al. Tannin inhibits macrophage M1 polarization through downregulation of miR-155/JAK1-STAT1 pathway. Chin J Tradit Chin Med (Chin) 2020;45:2158–2164.
      Xiong Y, Chen C, Hu G, et al. Berberine alleviates ulcerative colitis by promoting macrophage M2 polarization. Northwest J Pharm (Chin) 2021;36:414–419.
      Tang B, Zhu J, Zhang B, et al. Therapeutic potential of triptolide as an anti-inflammatory agent in dextran sulfate sodium-induced murine experimental colitis. Front Immunol 2020;11:592084. (PMID: 33240279768090410.3389/fimmu.2020.592084)
      Tian L, Zhao JL, Kang JQ, et al. Astragaloside N alleviates the experimental DSS-induced colitis by remodeling macrophage polarization through STAT signaling. Front Immunol 2021;12:740565. (PMID: 34589089847368110.3389/fimmu.2021.740565)
      Wang Y, Xu Y, Zhang P, et al. Smiglaside A ameliorates LPS-induced acute lung injury by modulating macrophage polarization via AMPK-PPARgamma pathway. Biochem Pharmacol 2018;156:385–395. (PMID: 3019573110.1016/j.bcp.2018.09.002)
      Zhang X, Liu MH, Qiao L, et al. Ginsenoside Rb1 enhances atheros clerotic plaque stability by skewing macrophages to the M2 phenotype. J Cell Mol Med 2018;22:409–416. (PMID: 2894499210.1111/jcmm.13329)
      Yang X W, Li Y H, Zhang H, et al. Safflower yellow regulates microglial polarization and inhibits inflammatory response in LPS-stimulated Bv2 cells. Int J Immunopathol Pharmacol 2015;29:54–64. (PMID: 26634402580673610.1177/0394632015617065)
      Zong W, Yan C, Zhen R, et al. Paeoniflorin regulates Th17/Treg homeostasis by targeting NF-κB signaling pathway in ulcerative colitis. J Shanxi Med Univ (Chin) 2022;53:192–201.
      Jin M, Lai Y, Ao Y, et al. The effect of resveratrol on M1/M2 macrophage polarization and its mechanism. Lishizhen Med Meter Med Res (Chin) 2018;29:1319–1322.
      Huang Y, Zhang Y, Wan T, et al. Systems pharmacology approach uncovers ligustilide attenuates experimental colitis in mice by inhibiting PPARγ-mediated inflammation pathways. Cell Biol Toxicol 2021;37:113–128. (PMID: 3313097110.1007/s10565-020-09563-z)
      Zhu W, Jin Z, Yu J, et al. Baicalin ameliorates experimental inflammatory bowel disease through polarization of macrophages to an M2 phenotype. Int Immunopharmacol 2016;35:119–126. (PMID: 2703921010.1016/j.intimp.2016.03.030)
      Li C. Study on the mechanism of anti-inflammatory and anti-ulcerative colitis of berberine intestinal oxidative metabolites [Dissertation]. Guangzhou: Guangzhou University of Traditional Chinese Medicine; 2019.
      Wang Y, Liu J, Huang Z, et al. Coptisine ameliorates DSS-induced ulcerative colitis via improving intestinal barrier dysfunction and suppressing inflammatory response. Eur J Pharmacol 2021;896:173912. (PMID: 3350828010.1016/j.ejphar.2021.173912)
      Li L, Hou X, Xu R, et al. Research review on the pharmacological effects of astragaloside IV. Fund Clin Pharm (Chin) 2017;31:17–36. (PMID: 10.1111/fcp.12232)
      Yang M, Li WY, Xie J, Wang ZL, Wen YL, Zhao CC, et al. Astragalin inhibits the proliferation and migration of human colon cancer HCT116 cells by regulating the NF-κB signaling pathway. Front Pharmacol 2021;12:639256. (PMID: 33953676809152110.3389/fphar.2021.639256)
      Wu S, Chen Z. Astragaloside IV alleviates the symptoms of experimental ulcerative colitis in vitro and in vivo. Exp Ther Med 2019;18:2877–288. (PMID: 315725326755457)
      Jiang XG, Sun K, Liu YY, et al. Astragaloside IV ameliorates 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis implicating regulation of energy metabolism. Sci Rep 2017;7:41832. (PMID: 28150820528880410.1038/srep41832)
      Luo X, Huang P, Yuan B, et al. Astragaloside IV enhances diabetic wound healing involving upregulation of alternatively activated macrophages. Int Immunopharmacol 2016;35:22–28. (PMID: 2701671610.1016/j.intimp.2016.03.020)
      Xu F, Cui WQ, Wei Y, et al. Astragaloside IV inhibits lung cancer progression and metastasis by modulating macrophage polarization through AMPK signaling. J Exp Clin Cancer Res 2018;37:207. (PMID: 30157903611654810.1186/s13046-018-0878-0)
      Jiang C, Zhou Z, Lin Y, et al. Astragaloside IV ameliorates steroid-induced osteonecrosis of the femoral head by repolarizing the phenotype of pro-inflammatory macrophages. Int Immunopharmacol 2021;93:107345. (PMID: 3356355310.1016/j.intimp.2020.107345)
      Wang Y, Xu Y, Zhang P, et al. Smiglaside A ameliorates LPS-inducedacute lung injury by modulating macrophage polarization via AMPK-PPARγ pathway. Biochem Pharmacol 2018;156:385–395. (PMID: 3019573110.1016/j.bcp.2018.09.002)
      Zhang X J, He C, Tian K, et al. Ginsenoside Rb1 attenuates angiotensin II-induced abdominal aortic aneurysm through inactivation of the JNK and p38 signaling pathways. Vascul Pharmacol 2015;73:86–95. (PMID: 2591276310.1016/j.vph.2015.04.003)
      Yu J, Eto M, Akishita M, et al. Signaling pathway of nitric oxide production induced by ginsenoside Rb1 in human aortic endothelial cells: a possible involvement of androgen receptor. Biochem Biophys Res Commun 2007;353:764–769. (PMID: 1719693310.1016/j.bbrc.2006.12.119)
      Shao Y, Xu X, Li Y, et al. Paeoniflorin inhibits high glucose-induced macrophage activation through TLR2-dependent signal pathways. J Ethnopharmacol 2016;193:377–386. (PMID: 2756620410.1016/j.jep.2016.08.035)
      Zhai T, Sun Y, Li H, et al. Unique immunomodulatory effect of paeoniflorin on type I and II macrophages activities. J Pharmacol Sci 2016;130:143–150. (PMID: 2685226010.1016/j.jphs.2015.12.007)
      Kim I D, Ha BJ. Paeoniflorin protects RAW 264.7 macrophages from LPS-induced cytotoxicity and genotoxicity. Toxicol In Vitro 2009;23:1014–1019. (PMID: 1954091210.1016/j.tiv.2009.06.019)
      Carter LG, D’Orazio JA, Pearson KJ. Resveratrol and cancer: focus on in vivo evidence. Endocr Relat Cancer 2014;21:R209–R225. (PMID: 24500760401323710.1530/ERC-13-0171)
      Yuan J, Cong R, Xia J, et al. Baicalin regulates macrophage polarization to attenuate lipopolysaccharide-induced acute lung injury in rats. J Cell Mol Immunol 2022;38:9–15.
      Sun DJ, Wei XN, Cheng Y, et al. Mechanism of Astragalus-Patrinia herb on repairing intestinal mucosal barrier function in UC mice based on JAK1/STAT6/SOCS1 signal pathway. Lishizhen Med Mater Med Res (Chin) 2023;34:31–37.
      Liang Y, Sun R, Liu F, et al. Network pharmacology and experimental validation of the mechanism of action of Astragalus-curcuma-flea horn drug combination against colorectal cancer. China J Tradit Chin Med (Chin) 2022;47:776–785.
      Wang J. Mechanistic study of compound enterotide inducing autophagy in colon cancer cells to promote polarization of tumor-associated macrophages [Dissertation]. Nanjing: Nanjing Medical University; 2018:100.
      Zhang X, Zhong R, Cui H, et al. The inhibitory effect of Jiawei Sijunzi Tang on CT26 colorectal cancer transplanted tumors in mice and the effect of CD68 and CD206 protein expression in tumor-associated macrophages. J Shanghai Univ Tradit Chin Med (Chin) 2019;33:61–65.
      Deng S, Wang A, Chen X, et al. HBD inhibits the development of colitis-associated cancer in mice via the IL-6R/STAT3 signaling pathway. Int J Mol Sci 2019;20:1069. (PMID: 30832202642932110.3390/ijms20051069)
      Yu W, Kang C, Zhang Y, et al. The San-Qi-Xue-Shang-Ning Formula protects against ulcerative colitis by restoring the homeostasis of gut immunity and microbiota. J Ethnopharmacol 2023;305:116125. (PMID: 3660378610.1016/j.jep.2022.116125)
      Li J, Li M, Ye K, et al. Chemical profile of Xian-He-Cao-Chang-Yan Formula and its effects on ulcerative colitis. J Ethnopharmacol 2021;267:113517. (PMID: 3316477310.1016/j.jep.2020.113517)
      Mao TY, Shi R, Zhao WH, et al. Qingchang Wenzhong Decoction ameliorates dextran sulphate sodium-induced ulcerative colitis in ratsby downregulating the IP10/CXCR3 axis-mediated inflammatory response. Evid Based Complement Alternat Med 2016;2016:1–10.
      Lu Q, Li J, Ding P, et al. Qingchang Wenzhong Decoction alleviates DSS-induced inflammatory bowel disease by inhibiting M1 macrophage polarization in vitro and in vivo. Biomed Res Int 2022;2022:11–16. (PMID: 10.1155/2022/9427076)
      Baeck C, Wehr A, Karlmark K R, et al. Pharmacological inhibition of the chemokine CCL2 (MCP-1) diminishes liver macrophage infiltration and steatohepatitis in chronic hepatic injury. Gut 2011;61:416–426. (PMID: 2181347410.1136/gutjnl-2011-300304)
      Yu W, Zhang Y, Kang C, et al. The pharmacological evidence of the Chang-yan-ning Formula in the treatment of colitis. Front Pharmacol 2022;13:1029088. (PMID: 36278202957931910.3389/fphar.2022.1029088)
      Yang Z, Lin S, Feng W, et al. A potential the rapeutic target in traditional Chinese medicine for ulcerative colitis: macrophage polarization. Front Pharmacol 2022;13:1–17.
      Gong J, Li J, Dong H, et al. Inhibitory effects of berberine on proinflammatory M1 macrophage polarization through interfering with the interaction between TLR4 and MyD88. BMC Complement Altern Med 2019;19:314. (PMID: 31744490686285910.1186/s12906-019-2710-6)
      Zhang J, Zheng Y, Luo Y, et al. Curcumin inhibits LPS-induced neuroinflammation by promoting microglial M2 polarization via TREM2/ TLR4/ NF-κ B pathways in BV2 cells. Mol Immunol 2019;116:29–37. (PMID: 3159004210.1016/j.molimm.2019.09.020)
      Wang F, Zhang S, Jeon R, et al. Interferon gamma induces reversible metabolic reprogramming of M1 macrophages to sustain cell viability and pro-inflammatory activity. EBioMedicine 2018;30:303–316. (PMID: 29463472595300110.1016/j.ebiom.2018.02.009)
      Liang YB, Tang H, Chen ZB, et al. Downregulated SOCS1 expression activates the JAK1/STAT1 pathway and promotes polarization of macrophages into M1 type. Mol Med Rep 2017;16:6405–6411. (PMID: 2890139910.3892/mmr.2017.7384)
      He Y, Gao Y, Zhang Q, et al. IL-4 switches microglia/macrophage M1/M2 polarization and alleviates neurological damage by modulating the JAK1/STAT6 pathway following ICH. Neuroscience 2020;437:161–171. (PMID: 3222423010.1016/j.neuroscience.2020.03.008)
      Shouval DS, Biswas A, Goettel JA, et al. Interleukin-10 receptor signaling in innate immune cells regulates mucosal immune tolerance and anti-inflammatory macrophage function. Immunity 2014;40:706–719. (PMID: 24792912451335810.1016/j.immuni.2014.03.011)
      Liu L, Zhu X, Zhao T, et al. Sirt1 ameliorates monosodium urate crystal-induced inflammation by altering macrophage polarization via the PI3K/Akt/STAT6 pathway. Rheumatology 2019;58:1674–1683. (PMID: 3110636210.1093/rheumatology/kez165)
      Liu Y, Liu X, Hua W, et al. Berberine inhibits macrophage M1 polarization via AKT1/SOCS1/NF-kappaB signaling pathway to protect against DSS-induced colitis. Int Immunopharmacol 2018;57:121–131. (PMID: 2948215610.1016/j.intimp.2018.01.049)
      Luo W, Xu Q, Wang Q, et al. Effect of modulation of PPAR-gamma activity on Kupffer cells M1/M2 polarization in the development of non-alcoholic fatty liver disease. Sci Rep 2017;7:44612. (PMID: 28300213535373210.1038/srep44612)
      Wen Q, Mei L, Ye S, et al. Chrysophanol demonstrates anti-inflammatory properties in LPS-primed RAW 264.7 macrophages through activating PPAR-gamma. Int Immunopharmacol 2018;56:90–97. (PMID: 2936709110.1016/j.intimp.2018.01.023)
      Wen Q, Miao J, Lau N, et al. Rhein attenuates lipopolysaccharide-primed inflammation through NF-kappaB inhibition in RAW264.7 cells: targeting the PPAR-gamma signal pathway. Can J Physiol Pharmacol 2020;98:357–365. (PMID: 3184635910.1139/cjpp-2019-0389)
    • Contributed Indexing:
      Keywords: Chinese medicine; colon cancer; macrophage; ulcerative colitis
    • Publication Date:
      Date Created: 20240402 Date Completed: 20240527 Latest Revision: 20240531
    • Publication Date:
      20240531
    • Accession Number:
      10.1007/s11655-024-4101-1
    • Accession Number:
      38565799