Comparison of the optical coherence tomography-angiography (OCT-A) vascular measurements between molecularly confirmed MODY and age-matched healthy controls.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer Verlag Country of Publication: Germany NLM ID: 9200299 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-5233 (Electronic) Linking ISSN: 09405429 NLM ISO Abbreviation: Acta Diabetol Subsets: MEDLINE
    • Publication Information:
      Publication: Berlin : Springer Verlag
      Original Publication: Berlin : Springer International, c1991-
    • Subject Terms:
    • Abstract:
      Aims: Previous structural, vascular density, and perfusion studies have mostly comprised type 1 and type 2 diabetes, even in the absence of retinopathy. The current study aimed to compare macular vessel density (VD) measurements between maturity-onset diabetes of the young (MODY) patients and controls.
      Methods: The macular VD of superficial, deep retina, and choriocapillaris (CC), and central macular thickness (CMT), foveal avascular zone (FAZ), FAZ perimetry, VD of the total retina at 300 µm around the FAZ (FD), and acirculatory index (AI) measurements were taken and analyzed via OCT-A (RTVue XR 100-2 Avanti, AngioVue) and were compared between molecularly confirmed MODY (glucokinase (GCK) variants) patients and healthy controls.
      Results: Twenty-five MODY patients and 30 healthy controls were included in the study. The mean plasma hemoglobin A1c level in the MODY group was 6.39 ± 0.38. The mean age was 13.8 ± 2.1 in the MODY group and was 12.6 ± 2.5 years among controls. There was no significant difference in terms of the age, superficial and deep retinal VD, FAZ, FAZ perimetry, CMT, FD, or AI between the groups. Compared to the healthy controls, a slight but significant increase in the CC-VD was detected in the MODY group, but only in the parafoveal and perifoveal regions (p = 0.034, p = 0.009).
      Conclusion: The significant CC-VD increase in the MODY group might be associated with hyperglycemia and/or relatively poor and vulnerable peripheral vascular CC perfusion compared to the central. Previous thickness and VD results of childhood or adolescent diabetes were distributed in a wider range, suggesting that various factors, including some not yet clearly defined, may affect the choroidal vasculature independently of glycemia or as a contributing factor.
      (© 2024. Springer-Verlag Italia S.r.l., part of Springer Nature.)
    • References:
      Flannick J, Johansson S, Njølstad PR (2016) Common and rare forms of diabetes mellitus: towards a continuum of diabetes subtypes. Nat Rev Endocrinol 12(7):394–406. https://doi.org/10.1038/NRENDO.2016.5. (PMID: 10.1038/NRENDO.2016.527080136)
      Sanyoura M, Philipson LH, Naylor R (2018) Monogenic diabetes in children and adolescents: recognition and treatment options. Curr Diabet Rep. https://doi.org/10.1007/s11892-018-1024-2. (PMID: 10.1007/s11892-018-1024-2)
      Nkonge KM, Nkonge DK, Nkonge TN (2020) The epidemiology, molecular pathogenesis, diagnosis, and treatment of maturity-onset diabetes of the young (MODY). Clin Diabet Endocrinol 6(1):20. https://doi.org/10.1186/S40842-020-00112-5. (PMID: 10.1186/S40842-020-00112-5)
      Owen K. Orphanet: MODY. Noviembre. Published 2014. Accessed on March 13, 2022. https://www.orpha.net/consor/cgi-bin/OC_Exp.php?Lng=GB&Expert=552.
      Firdous P, Nissar K, Ali S et al (2018) Genetic testing of maturity-onset diabetes of the young current status and future perspectives. Front Endocrinol (Lausanne) 9:253. https://doi.org/10.3389/fendo.2018.00253. (PMID: 10.3389/fendo.2018.0025329867778)
      Amed S, Dean HJ, Panagiotopoulos C et al (2010) Type 2 diabetes, medication-induced diabetes, and monogenic diabetes in Canadian children: a prospective national surveillance study. Diabetes Care 33(4):786–791. https://doi.org/10.2337/dc09-1013. (PMID: 10.2337/dc09-1013200679562845028)
      Urbanová J, Brunerová L, Brož J (2018) Hidden MODY-Looking for a needle in a Haystack. Front Endocrinol (Lausanne) 9:355. https://doi.org/10.3389/FENDO.2018.00355/BIBTEX. (PMID: 10.3389/FENDO.2018.00355/BIBTEX30013516)
      Amed S, Oram R (2016) Maturity-onset diabetes of the young (MODY): making the right diagnosis to optimize treatment. Can J Diabet 40(5):449–454. https://doi.org/10.1016/j.jcjd.2016.03.002. (PMID: 10.1016/j.jcjd.2016.03.002)
      Rafique I, Mir A, Saqib MAN, Naeem M, Marchand L, Polychronakos C (2021) Causal variants in maturity onset diabetes of the young (MODY)—a systematic review. BMC Endocr Disord 21(1):1–6. https://doi.org/10.1186/S12902-021-00891-7/FIGURES/4. (PMID: 10.1186/S12902-021-00891-7/FIGURES/4)
      Jia Y, Tan O, Tokayer J et al (2012) Split-spectrum amplitude-decorrelation angiography with optical coherence tomography. Opt Expr 20(4):4710–4725. https://doi.org/10.1364/OE.20.004710. (PMID: 10.1364/OE.20.004710)
      Gao SS, Jia Y, Zhang M et al (2016) Optical coherence tomography angiography. Invest Ophthalmol Vis Sci 57(9):27–36. https://doi.org/10.1167/iovs.15-19043. (PMID: 10.1167/iovs.15-19043)
      Chua J, Sim R, Tan B et al (2020) Optical coherence tomography angiography in diabetes and diabetic retinopathy. J Clin Med 9(6):1723. https://doi.org/10.3390/jcm9061723. (PMID: 10.3390/jcm9061723325032347357089)
      Mayer-Davis EJ, Kahkoska AR, Jefferies C et al (2018) ISPAD clinical practice consensus guidelines 2018: definition, epidemiology, and classification of diabetes in children and adolescents. Pediatr Diabet 19:7–19. https://doi.org/10.1111/pedi.12773. (PMID: 10.1111/pedi.12773)
      [website, accessed on 23th November 2022] DiMeglio LA, Acerini CL, Codner E et al. Chapter 8: Glycemic control targets and glucose monitoring for children, adolescents with Diabetes. International Society of Pediatric and Adolescent Diabetes (ISPAD). url: https://www.ispad.org/page/Guidelines2018Chap8.
      Richards S, Aziz N, Bale S et al (2015) Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American college of medical genetics and genomics and the association for molecular pathology. Genet Med 17(5):405–424. https://doi.org/10.1038/gim.2015.30. (PMID: 10.1038/gim.2015.30257418684544753)
      Kinoshita T, Mitamura Y, Shinomiya K et al (2017) Diurnal variations in luminal and stromal areas of choroid in normal eyes. Br J Ophthalmol 101(3):360–364. https://doi.org/10.1136/bjophthalmol-2016-308594. (PMID: 10.1136/bjophthalmol-2016-30859427297216)
      Çavdarli C, Çavdarli B, Topcu-Yilmaz P, Polat Gültekin B (2020) Optical coherence tomography-angiographic vascular densities in familial mediterranean fever (FMF) patients with M694V mutations. Ophthalmic Genet 41(3):257–262. https://doi.org/10.1080/13816810.2020.1759108. (PMID: 10.1080/13816810.2020.175910832372681)
      Coscas F, Sellam A, Glacet-Bernard A et al (2016) Normative data for vascular density in superficial and deep capillary plexuses of healthy adults assessed by optical coherence tomography angiography. Invest Ophthalmol Vis Sci 57(9):211–223. https://doi.org/10.1167/iovs.15-18793. (PMID: 10.1167/iovs.15-18793)
      Agemy SA, Scripsema NK, Shah CM, Gentile RC, Hsiao Y, Zhou Q (2015) Retinal vascular perfusion density mapping using optical coherence tomography angiography in normals and diabetic retinopathy patients. Retina 35(11):2353–2363. https://doi.org/10.1097/IAE.0000000000000862. (PMID: 10.1097/IAE.000000000000086226465617)
      Agra CLDM, Lira RPC, Pinheiro FG, Sá LHSE, Bravo Filho VTF (2021) Optical coherence tomography angiography: microvascular alterations in diabetic eyes without diabetic retinopathy. Arq Bras Oftalmol 84(2):149–157. https://doi.org/10.5935/0004-2749.20210023. (PMID: 10.5935/0004-2749.2021002333567012)
      Yasin Alibhai A, Moult EM, Shahzad R et al (2018) Quantifying microvascular changes using OCT angiography in diabetic eyes without clinical evidence of retinopathy. Ophthalmol Retina 2(5):418–427. https://doi.org/10.1016/j.oret.2017.09.011. (PMID: 10.1016/j.oret.2017.09.01130820483)
      Krawitz BD, Mo S, Geyman LS et al (2017) Acircularity index and axis ratio of the foveal avascular zone in diabetic eyes and healthy controls measured by optical coherence tomography angiography. Vision Res 139:177–186. https://doi.org/10.1016/j.visres.2016.09.019. (PMID: 10.1016/j.visres.2016.09.01928212983)
      Conti FF, Qin VL, Rodrigues EB et al (2019) Choriocapillaris and retinal vascular plexus density of diabetic eyes using split-spectrum amplitude decorrelation spectral-domain optical coherence tomography angiography. Br J Ophthalmol 103(4):452–456. https://doi.org/10.1136/bjophthalmol-2018-311903. (PMID: 10.1136/bjophthalmol-2018-31190329793926)
      Stulova AN, Semenova NS, Zheleznyakova AV, Akopyan VS, Lipatov DV (2021) OCT-A and functional signs of preclinical retinopathy in type 1 diabetes mellitus. Ophthalmic Surg Lasers Imaging Retina 52(S1):S30–S34. https://doi.org/10.3928/23258160-20210518-06. (PMID: 10.3928/23258160-20210518-0634310241)
      Choi W, Waheed NK, Moult EM et al (2017) Ultrahigh speed swept source optical coherence tomography angiography of retinal and choriocapillaris alterations ın diabetıc patients with and without retinopathy. Retina 37(1):11–21. https://doi.org/10.1097/IAE.0000000000001250. (PMID: 10.1097/IAE.0000000000001250275570845177496)
      Vujosevic S, Muraca A, Alkabes M et al (2019) Early microvascular and neural changes in patients with type 1 and type 2 diabetes mellitus without clinical signs of diabetıc retinopathy. Retina 39(3):435–445. https://doi.org/10.1097/IAE.0000000000001990. (PMID: 10.1097/IAE.000000000000199029206758)
      Agemy SA, Scripsema NK, Shah CM et al (2015) Retinal vascular perfusion density mapping using optical coherence tomography angiography in normals and diabetic retinopathy patients. Retina 35(11):2353–2363. https://doi.org/10.1097/IAE.0000000000000862. (PMID: 10.1097/IAE.000000000000086226465617)
      Battista M, Borrelli E, Sacconi R, Bandello F, Querques G (2020) Optical coherence tomography angiography in diabetes: a review. Eur J Ophthalmol 30(3):411–416. https://doi.org/10.1177/1120672119899901. (PMID: 10.1177/112067211989990131928211)
      Zhang B, Chou Y, Zhao X, Yang J, Chen Y (2021) Early detection of microvascular impairments with optical coherence tomography angiography in diabetic patients without clinical retinopathy: a meta-analysis. Am J Ophthalmol 222:226–237. https://doi.org/10.1016/J.AJO.2020.09.032. (PMID: 10.1016/J.AJO.2020.09.03232976846)
      Freiberg FJ, Pfau M, Wons J, Wirth MA, Becker MD, Michels S (2016) Optical coherence tomography angiography of the foveal avascular zone in diabetic retinopathy. Graefes Arch Clin Exp Ophthalmol 254:1051–1058. (PMID: 10.1007/s00417-015-3148-226338819)
      Delvecchio M, Pastore C, Giordano P (2020) Treatment options for MODY patients: a systematic review of literature. Diabetes Ther 11(8):1667–1685. https://doi.org/10.1007/s13300-020-00864-4. (PMID: 10.1007/s13300-020-00864-4325831737376807)
      Mulfaul K, Russell JF, Voigt AP, Stone EM, Tucker BA, Mullins RF (2022) The essential role of the choriocapillaris in vision: novel insights from imaging and molecular biology. Annu Rev Vis Sci 8:33–52. https://doi.org/10.1146/annurev-vision-100820-085958. (PMID: 10.1146/annurev-vision-100820-085958361081039668353)
      Querques G, Lattanzio R, Querques L et al (2012) Enhanced depth imaging optical coherence tomography in type 2 diabetes. Invest Ophthalmol Vis Sci 53(10):6017–6024. https://doi.org/10.1167/iovs.12-9692. (PMID: 10.1167/iovs.12-969222879414)
      Esmaeelpour M, Brunner S, Ansari-Shahrezaei S et al (2012) Choroidal thinning in diabetes type 1 detected by 3-dimensional 1060 nm optical coherence tomography. Invest Ophthalmol Vis Sci 53(11):6803–6809. https://doi.org/10.1167/iovs.12-10314. (PMID: 10.1167/iovs.12-1031422952126)
      Esmaeelpour M, Považay B, Hermann B et al (2011) Mapping choroidal and retinal thickness variation in type 2 diabetes using three-dimensional 1060-nm optical coherence tomography. Invest Ophthalmol Vis Sci 52(8):5311–5316. https://doi.org/10.1167/iovs.10-6875. (PMID: 10.1167/iovs.10-687521508108)
      Vujosevic S, Martini F, Cavarzeran F, Pilotto E, Midena E (2012) Macular and peripapillary choroidal thickness in diabetic patients. Retina 32(9):1781–1790. https://doi.org/10.1097/IAE.0b013e31825db73d. (PMID: 10.1097/IAE.0b013e31825db73d22869022)
      Lee HK, Lim JW, Shin MC (2013) Comparison of choroidal thickness in patients with diabetes by spectral-domain optical coherence tomography. Korean J Ophthalmol 27(6):433–439. https://doi.org/10.3341/kjo.2013.27.6.433. (PMID: 10.3341/kjo.2013.27.6.433243119293849307)
      Kim JT, Lee DH, Joe SG, Kim JG, Yoon YH (2013) Changes in choroidal thickness in relation to the severity of retinopathy and macular edema in type 2 diabetic patients. Investig Ophthalmol Vis Sci 54(5):3378–3384. https://doi.org/10.1167/iovs.12-11503. (PMID: 10.1167/iovs.12-11503)
      Ferreira JT, Vicente A, Proença R, Santos BO, Cunha JP, Alves M et al (2018) Choroidal thickness in diabetic patients without diabetic retinopathy. Retina 38(4):795–804. https://doi.org/10.1097/IAE.0000000000001582. (PMID: 10.1097/IAE.0000000000001582)
      Ferrara D, Waheed NK, Duker JS (2016) Investigating the choriocapillaris and choroidal vasculature with new optical coherence tomography technologies. Prog Retin Eye Res 52:130–155. https://doi.org/10.1016/j.preteyeres.2015.10.002. (PMID: 10.1016/j.preteyeres.2015.10.00226478514)
      Jo Y, Ikuno Y, Iwamoto R, Okita K, Nishida K (2014) Choroidal thickness changes after diabetes type 2 and blood pressure control in a hospitalized situation. Retina 34(6):1190–1198. https://doi.org/10.1097/IAE.0000000000000051. (PMID: 10.1097/IAE.000000000000005124853688)
      Wiley HE, Ferris III FL (2013) Nonproliferative diabetic retinopathy and diabetic macular edema. In: Ryan SJ, editor. Retina. (Londres: Elsevier Saunders) pp 940–68.
      Reis A, Mateus C, Melo P et al (2014) Neuroretinal dysfunction with intact bloodretinal barrier and absent vasculopathy in diabetes type 1. Diabetes 63:3926–3937. https://doi.org/10.2337/db13-1673. (PMID: 10.2337/db13-167324947354)
      Yoshida A, Kojima M, Ogasawara H, Ishiko S (1991) Oscillatory potentials and permeability of the blood-retinal barrier in noninsulin-dependent diabetic patients without retinopathy. Ophthalmology 98:1266–1271. https://doi.org/10.1016/s0161-6420(91)32144-4. (PMID: 10.1016/s0161-6420(91)32144-41923365)
      Tiedeman JS, Kirk SE, Srinivas S, Beach JM (1998) Retinal oxygen consumption during hyperglycemia in patients with diabetes without retinopathy. Ophthalmology 105(1):31–36. https://doi.org/10.1016/s0161-6420(98)71029-1. (PMID: 10.1016/s0161-6420(98)71029-19442776)
      Bartol-Puyal FA, Isanta C, Calvo P, Méndez-Martínez S, Ruiz-Moreno Ó, Pablo L (2022) Mapping of choriocapillaris vascular density in young and aged healthy subjects. Eur J Ophthalmol 32(5):2789–2800. https://doi.org/10.1177/11206721211067019. (PMID: 10.1177/1120672121106701934881677)
      Wangsa-Wirawan ND, Linsenmeier RA (2003) Retinal oxygen: fundamental and clinical aspects. Arch Ophthalmol 121(4):547–557. https://doi.org/10.1001/archopht. (PMID: 10.1001/archopht12695252)
    • Contributed Indexing:
      Keywords: Angiography; Density; Diabetes; MODY; Vascular; Vessel
    • Accession Number:
      EC 2.7.1.2 (Glucokinase)
    • Subject Terms:
      Mason-Type Diabetes
    • Publication Date:
      Date Created: 20240402 Date Completed: 20240617 Latest Revision: 20240617
    • Publication Date:
      20240619
    • Accession Number:
      10.1007/s00592-024-02273-6
    • Accession Number:
      38565685