Signals of selection and ancestry in independently feral Gallus gallus populations.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Blackwell Scientific Publications Country of Publication: England NLM ID: 9214478 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1365-294X (Electronic) Linking ISSN: 09621083 NLM ISO Abbreviation: Mol Ecol Subsets: MEDLINE
    • Publication Information:
      Original Publication: Oxford, UK : Blackwell Scientific Publications, c1992-
    • Subject Terms:
    • Abstract:
      Recent work indicates that feralisation is not a simple reversal of domestication, and therefore raises questions about the predictability of evolution across replicated feral populations. In the present study we compare genes and traits of two independently established feral populations of chickens (Gallus gallus) that inhabit archipelagos within the Pacific and Atlantic regions to test for evolutionary parallelism and/or divergence. We find that feral populations from each region are genetically closer to one another than other domestic breeds, despite their geographical isolation and divergent colonisation histories. Next, we used genome scans to identify genomic regions selected during feralisation (selective sweeps) in two independently feral populations from Bermuda and Hawaii. Three selective sweep regions (each identified by multiple detection methods) were shared between feral populations, and this overlap is inconsistent with a null model in which selection targets are randomly distributed throughout the genome. In the case of the Bermudian population, many of the genes present within the selective sweeps were either not annotated or of unknown function. Of the nine genes that were identifiable, five were related to behaviour, with the remaining genes involved in bone metabolism, eye development and the immune system. Our findings suggest that a subset of feralisation loci (i.e. genomic targets of recent selection in feral populations) are shared across independently established populations, raising the possibility that feralisation involves some degree of parallelism or convergence and the potential for a shared feralisation 'syndrome'.
      (© 2024 The Authors. Molecular Ecology published by John Wiley & Sons Ltd.)
    • References:
      Barghi, N., Hermisson, J., & Schlötterer, C. (2020). Polygenic adaptation: A unifying framework to understand positive selection. Nature Reviews Genetics, 21(12), 769–781.
      Blount, Z. D., Lenski, R. E., & Losos, J. B. (2018). Contingency and determinism in evolution: Replaying life's tape. Science, 362(6415), eaam5979.
      Browning, B. L., Tian, X., Zhou, Y., & Browning, S. R. (2021). Fast two‐stage phasing of large‐scale sequence data. The American Journal of Human Genetics, 108(10), 1880–1890.
      Bolger, A. M., Lohse, M., & Usadel, B. (2014). Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics, 30(15), 2114–2120.
      Chang, C. C., Chow, C. C., Tellier, L. C., Vattikuti, S., Purcell, S. M., & Lee, J. J. (2015). Second‐generation PLINK: Rising to the challenge of larger and richer datasets. GigaScience, 4(1), 7.
      Charlesworth, B. (2012). The role of background selection in shaping patterns of molecular evolution and variation: Evidence from variability on the Drosophila X chromosome. Genetics, 191(1), 233–246.
      Chen, C., Xu, Y.‐J., Zhang, S.‐R., Wang, X.‐H., Hu, Y., Guo, D.‐H., Zhou, X.‐J., Zhu, W.‐Y., Wen, A.‐D., & Tan, Q.‐R. (2023). MiR‐1281 is involved in depression disorder and the antidepressant effects of Kai‐Xin‐San by targeting ADCY1 and DVL1. Heliyon, 9(3), e14265.
      Chen, J., Ding, Q., An, L., & Wang, H. (2022). Ca2+−stimulated adenylyl cyclases as therapeutic targets for psychiatric and neurodevelopmental disorders. Frontiers in Pharmacology, 13, 949384.
      Chen, S., Zhou, Y., Chen, Y., & Gu, J. (2018). fastp: An ultra‐fast all‐in‐one FASTQ preprocessor. Bioinformatics, 34(17), i884–i890.
      Colosimo, P. F., Hosemann, K. F., Balbhadra, S., Villareal, G., Jr., Dickson, M., Grimwood, J., Schmutz, J., Myes, R. M., Schluter, D., & Kingsley, D. M. (2005). Widespread parallel evolution in sticklebacks by repeated fixation of Ecodysplasin alleles. Science, 307, 1928–1933.
      Danecek, P., Auton, A., Abecasis, G., Albers, C. A., Banks, E., DePristo, M. A., Handsaker, R. E., Lunter, G., Marth, G. T., Sherry, S. T., & McVean, G. (2011). The variant call format and VCFtools. Bioinformatics, 27(15), 2156–2158.
      Danecek, P., Bonfield, J. K., Liddle, J., Marshall, J., Ohan, V., Pollard, M. O., Whitwham, A., Keane, T., McCarthy, S. A., & Davies, R. M. (2021). Twelve years of SAMtools and BCFtools. GigaScience, 10(2), giab008.
      DeGiorgio, M., Huber, C. D., Hubisz, M. J., Hellmann, I., & Nielsen, R. (2016). SweepFinder2: Increased sensitivity, robustness and flexibility. Bioinformatics, 32(12), 1895–1897.
      DePristo, M. A., Banks, E., Poplin, R., Garimella, K. V., Maguire, J. R., Hartl, C., Philippakis, A. A., del Angel, G., Rivas, M. A., Hanna, M., McKenna, A., Fennell, T. J., Kernytsky, A. M., Sivachenko, A. Y., Cibulskis, K., Gabriel, S. B., Altshuler, D., & Daly, M. J. (2011). A framework for variation discovery and genotyping using next‐generation DNA sequencing data. Nature Genetics, 43, 491–498.
      Dubey, J. (2010). Toxoplasma gondii infections in chickens (Gallus domesticus): Prevalence, clinical disease, diagnosis and public health significance. Zoonoses and Public Health, 57(1), 60–73.
      Elferink, M. G., van As, P., Veenendaal, T., Crooijmans, R. P., & Groenen, M. A. (2010). Regional differences in recombination hotspots between two chicken populations. BMC Genetics, 11(1), 1–10.
      Fogelholm, J., Inkabi, S., Höglund, A., Abbey‐Lee, R., Johnsson, M., Jensen, P., Henriksen, R., & Wright, D. (2019). Genetical genomics of tonic immobility in the chicken. Genes, 10(5), 341.
      Fromer, M., Roussos, P., Sieberts, S. K., Johnson, J. S., Kavanagh, D. H., Perumal, T. M., Ruderfer, D. M., Oh, E. C., Topol, A., & Shah, H. R. (2016). Gene expression elucidates functional impact of polygenic risk for schizophrenia. Nature Neuroscience, 19(11), 1442–1453.
      Gautier, M., Klassmann, A., & Vitalis, R. (2017). rehh 2.0: A reimplementation of the R package rehh to detect positive selection from haplotype structure. Molecular Ecology Resources, 17(1), 78–90.
      Gering, E., Incorvaia, D., Henriksen, R., Conner, J., Getty, T., & Wright, D. (2019). Getting back to nature: Feralization in animals and plants. Trends in Ecology & Evolution, 34(12), 1137–1151.
      Gering, E., Incorvaia, D., Henriksen, R., Wright, D., & Getty, T. (2019). Maladaptation in feral and domesticated animals. Evolutionary Applications, 12(7), 1274–1286.
      Gering, E., Johnsson, M., Willis, P., Getty, T., & Wright, D. (2015). Mixed‐ancestry and admixture in Kauai's feral chickens: Invasion of domestic genes into ancient Red Junglefowl reservoirs. Molecular Ecology, 24(9), 2112–2124.
      Gipson, P. S., Lee, C. D., Wilson, S., Thiele, J. R., & Hobbick, D. (2006). Status of feral pigs in Kansas and Nebraska.
      Girdland Flink, L., Allen, R., Barnett, R., Malmström, H., Peters, J., Eriksson, J., Andersson, L., Dobney, K., & Larson, G. (2014). Establishing the validity of domestication genes using DNA from ancient chickens. Proceedings of the National Academy of Sciences of the United States of America, 111(17), 6184–6189.
      Government of Bermuda report. (2013). Feral Chicken Management Plan. https://www.gov.bm/sites/default/files/Feral%20Chicken%20Management%20Plan%20Nov%202013%20‐%20secured.pdf.
      Grünewald, S., Forslund, K., Dress, A., & Moulton, V. (2007). QNet: An agglomerative method for the construction of phylogenetic networks from weighted quartets. Molecular Biology and Evolution, 24(2), 532–538.
      Gu, L.‐Z., Jiang, T., Cheng, Z.‐H., Zhang, Y.‐C., Ou, M.‐M., Chen, M.‐C., & Ling, W.‐M. (2015). TSNARE1 polymorphisms are associated with schizophrenia susceptibility in Han Chinese. Journal of Neural Transmission, 122, 929–932.
      Henriksen, R., Gering, E., & Wright, D. (2018). Feralisation—The understudied counterpoint to domestication. Origin and evolution of biodiversity (pp. 183–195). Springer.
      Hofmeister, R. J., Ribeiro, D. M., Rubinacci, S., & Delaneau, O. (2023). Accurate rare variant phasing of whole‐genome and whole‐exome sequencing data in the UK Biobank. Nature Genetics, 55(7), 1243–1249.
      Hu, L., Yin, C., Chen, D., Wu, Z., Liang, S., Zhang, Y., Huang, Z., Liu, S., Xu, X., & Chen, Z. (2021). MACF1 promotes osteoblast differentiation by sequestering repressors in cytoplasm. Cell Death & Differentiation, 28(7), 2160–2178.
      Huang, S., Zheng, C., Xie, G., Song, Z., Wang, P., Bai, Y., Chen, D., Zhang, Y., Lv, P., & Liang, W. (2021). FAM19A5/TAFA5, a novel neurokine, plays a crucial role in depressive‐like and spatial memory‐related behaviors in mice. Molecular Psychiatry, 26(6), 2363–2379.
      Huber, C. D., DeGiorgio, M., Hellmann, I., & Nielsen, R. (2016). Detecting recent selective sweeps while controlling for mutation rate and background selection. Molecular Ecology, 25(1), 142–156.
      Huson, D. H., & Bryant, D. (2005). Estimating phylogenetic trees and networks using SplitsTree 4. Manuscript in preparation, software available from www.splitstree.org.
      Huson, D. H., & Bryant, D. (2006). Application of phylogenetic networks in evolutionary studies. Molecular Biology and Evolution, 23(2), 254–267.
      Ishiguro, H., Gong, J. P., Hall, F. S., Arinami, T., & Uhl, G. R. (2008). Association of PTPRB gene polymorphism with drug addiction. American Journal of Medical Genetics Part B: Neuropsychiatric Genetics, 147(7), 1167–1172.
      Johnsson, M., Gering, E., Willis, P., Lopez, S., Van Dorp, L., Hellenthal, G., Henriksen, R., Friberg, U., & Wright, D. (2016). Feralisation targets different genomic loci to domestication in the chicken. Nature Communications, 7, 12950.
      Johnsson, M., Henriksen, R., Fogelholm, J., Höglund, A., Jensen, P., & Wright, D. (2018). Genetics and genomics of social behavior in a chicken model. Genetics, 209(1), 209–221.
      Johnsson, M., Williams, M. J., Jensen, P., & Wright, D. (2016). Genetical genomics of behavior: A novel chicken genomic model for anxiety behavior. Genetics, 202(1), 327–340.
      Kim, Y., & Stephan, W. (2002). Detecting a local signature of genetic hitchhiking along a recombining chromosome. Genetics, 160(2), 765–777.
      Kirch, P. V. (2011). When did the Polynesians settle Hawaii? A review of 150 years of scholarly inquiry and a tentative answer. Hawaiian Archaeology, 12(20), 3–26.
      Lawrence, M., Huber, W., Pagès, H., Aboyoun, P., Carlson, M., Gentleman, R., Morgan, M. T., & Carey, V. J. (2013). Software for computing and annotating genomic ranges. PLoS Computational Biology, 9(8), e1003118.
      Lawson, D. J., Hellenthal, G., Myers, S., & Falush, D. (2012). Inference of population structure using dense haplotype data. PLoS Genetics, 8(1), e1002453.
      Li, C., Whelan, R., Yang, H., Jiang, Y., Qiu, C., Meng, Q., & Wei, J. (2019). Anti‐TSNARE1 IgG plasma levels differ by sex in patients with schizophrenia in a Chinese population. FEBS Open Bio, 9(10), 1705–1712.
      Li, H. (2013). Aligning sequence reads, clone sequences and assembly contigs with BWA‐MEM. arXiv preprint arXiv: 1303.3997. https://doi.org/10.48550/arXiv.1303.3997.
      Li, J., Li, S., Song, Y., Zhou, W., Zhu, X., Xu, S., Ma, Y., & Zhu, C. (2020). Association of serum FAM19A5 with cognitive impairment in vascular dementia. Disease Markers, 2020, 1–5.
      Li, M., Shen, L., Chen, L., Huai, C., Huang, H., Wu, X., Yang, C., Ma, J., Zhou, W., & Du, H. (2020). Novel genetic susceptibility loci identified by family based whole exome sequencing in Han Chinese schizophrenia patients. Translational Psychiatry, 10(1), 5.
      Lin, R.‐J., Chien, H.‐L., Lin, S.‐Y., Chang, B.‐L., Yu, H.‐P., Tang, W.‐C., & Lin, Y.‐L. (2013). MCPIP1 ribonuclease exhibits broad‐spectrum antiviral effects through viral RNA binding and degradation. Nucleic Acids Research, 41(5), 3314–3326.
      Liu, C., Xu, X., Liu, X., Zhang, T., Li, Y., & Yan, P. (2022). DRD3 Ser9Gly polymorphism and treatment response to antipsychotics in schizophrenia: A meta‐analysis. Neuroscience Letters, 786, 136788.
      Loog, L., Thomas, M. G., Barnett, R., Allen, R., Sykes, N., Paxinos, P. D., Lebrasseur, O., Dobney, K., Peters, J., Manica, A., Larson, G., & Eriksson, A. (2017). Inferring allele frequency trajectories from ancient DNA indicates that selection on a chicken gene coincided with changes in medieval husbandry practices. Molecular Biology and Evolution, 34(8), 1981–1990.
      Mabry, M. E., Rowan, T. N., Pires, J. C., & Decker, J. E. (2021). Feralization: Confronting the complexity of domestication and evolution. Trends in Genetics, 37(4), 302–305.
      Mahler, D. L., Ingram, T., Revell, L. J., & Losos, J. B. (2013). Exceptional convergence on the macroevolutionary landscape in Island lizard radiations. Science, 341(6143), 292–295.
      Mapston, M. (2007). Feral hogs in Texas. Texas FARMER collection.
      Martin Cerezo, M. L., Lopez, S., Van Dorp, L., Hellenthal, G., Johnsson, M., Gering, E., Henriksen, R., & Wright, D. (2023). Population structure and hybridisation in a population of Hawaiian feral chickens. Heredity, 130(3), 154–162.
      Matsushita, K., Takeuchi, O., Standley, D. M., Kumagai, Y., Kawagoe, T., Miyake, T., Satoh, T., Kato, H., Tsujimura, T., Nakamura, H., & Akira, S. (2009). Zc3h12a is an RNase essential for controlling immune responses by regulating mRNA decay. Nature, 458(7242), 1185–1190.
      Mayer, J. J., Brisbin, I. L., Jr., & Sweeney, J. M. (1989). Temporal dynamics of color phenotypes in an isolated population of feral swine. Acta Theriologica, 34(12–28), 247–252.
      McKenna, A., Hanna, M., Banks, E., Sivachenko, A., Cibulskis, K., Kernytsky, A., Garimella, K., Altshuler, D., Gabriel, S., Daly, M., & DePristo, M. A. (2010). The Genome Analysis Toolkit: A MapReduce framework for analyzing next‐generation DNA sequencing data. Genome Research, 20, 1297–1303.
      Mi, H., Muruganujan, A., & Thomas, P. D. (2012). PANTHER in 2013: Modeling the evolution of gene function, and other gene attributes, in the context of phylogenetic trees. Nucleic Acids Research, 41(D1), D377–D386.
      Miao, R., Huang, S., Zhou, Z., Quinn, T., Van Treeck, B., Nayyar, T., Dim, D., Jiang, Z., Papasian, C. J., Eugene Chen, Y., Liu, G., & Fu, M. (2013). Targeted disruption of MCPIP1/Zc3h12a results in fatal inflammatory disease. Immunology & Cell Biology, 91(5), 368–376.
      Nasri Nasrabadi, P., Nayeri, Z., Gharib, E., Salmanipour, R., Masoomi, F., Mahjoubi, F., & Zomorodipour, A. (2020). Establishment of a CALU, AURKA, and MCM2 gene panel for discrimination of metastasis from primary colon and lung cancers. PLoS One, 15(5), e0233717.
      Newsome, A., & Corbett, L. (1985). The identity of the dingo III. The incidence of dingoes, dogs and hybrids and their coat colours in remote and settled regions of Australia. Australian Journal of Zoology, 33(3), 363–375.
      Otte, K. A., Nolte, V., Mallard, F., & Schlötterer, C. (2021). The genetic architecture of temperature adaptation is shaped by population ancestry and not by selection regime. Genome Biology, 22(1), 211.
      Plooster, M., Rossi, G., Farrell, M. S., McAfee, J. C., Bell, J. L., Ye, M., Diering, G. H., Won, H., Gupton, S. L., & Brennwald, P. (2021). Schizophrenia‐linked protein tSNARE1 regulates endosomal trafficking in cortical neurons. Journal of Neuroscience, 41(45), 9466–9481.
      Qanbari, S., Rubin, C.‐J., Maqbool, K., Weigend, S., Weigend, A., Geibel, J., Kerje, S., Wurmser, C., Peterson, A. T., Brisbin, I. L., Jr., Preisinger, R., Fries, R., Simianer, H., & Andersson, L. (2019). Genetics of adaptation in modern chicken. PLoS Genetics, 15(4), e1007989.
      Rubin, C.‐J., Zody, M. C., Eriksson, J., Meadows, J. R. S., Sherwood, E., Webster, M. T., Jiang, L., Ingman, M., Sharpe, T., Ka, S., Hallbook, F., Besnier, F., Carlborg, O., Bed'hom, B., Tixier‐Boichard, M., Jensen, P., Siegel, P., Lindblad‐Toh, K., & Andersson, L. (2010). Whole‐genome resequencing reveals loci under selection during chicken domestication. Nature, 464, 587–591.
      Sabeti, P. C., Reich, D. E., Higgins, J. M., Levine, H. Z., Richter, D. J., Schaffner, S. F., Gabriel, S. B., Platko, J. V., Patterson, N. J., & McDonald, G. J. (2002). Detecting recent positive selection in the human genome from haplotype structure. Nature, 419(6909), 832–837.
      Sabeti, P. C., Varilly, P., Fry, B., Lohmueller, J., Hostetter, E., Cotsapas, C., Xie, X., Byrne, E. H., McCarroll, S. A., & Gaudet, R. (2007). Genome‐wide detection and characterization of positive selection in human populations. Nature, 449(7164), 913–918.
      Schrode, N., Ho, S.‐M., Yamamuro, K., Dobbyn, A., Huckins, L., Matos, M. R., Cheng, E., Deans, P. M., Flaherty, E., & Barretto, N. (2019). Synergistic effects of common schizophrenia risk variants. Nature Genetics, 51(10), 1475–1485.
      Sleiman, P., Wang, D., Glessner, J., Hadley, D., Gur, R. E., Cohen, N., Li, Q., & Hakonarson, H. (2013). GWAS meta analysis identifies TSNARE1 as a novel schizophrenia/bipolar susceptibility locus. Scientific Reports, 3(1), 3075.
      Sofronov, A., Dobrovolskaya, A., Morozova, A. Y., Gorina, E., Kolchev, S., & Gvozdetckii, A. (2022). Association of gene polymorphisms DRD3 rs6280, COMT rs4680 and HTR2A rs7322347 with schizophrenia. Zhurnal Nevrologii i Psikhiatrii Imeni SS Korsakova, 122(7), 115–120.
      Staal, W. G. (2015). Autism, DRD3 and repetitive and stereotyped behavior, an overview of the current knowledge. European Neuropsychopharmacology, 25(9), 1421–1426.
      Sundararajan, T., Manzardo, A. M., & Butler, M. G. (2018). Functional analysis of schizophrenia genes using GeneAnalytics program and integrated databases. Gene, 641, 25–34.
      Tang, K., Thornton, K. R., & Stoneking, M. (2007). A new approach for using genome scans to detect recent positive selection in the human genome. PLoS Biology, 5(7), e171.
      Tatler, J., Prowse, T. A., Roshier, D. A., Cairns, K. M., & Cassey, P. (2021). Phenotypic variation and promiscuity in a wild population of pure dingoes (Canis dingo). Journal of Zoological Systematics and Evolutionary Research, 59(1), 311–322.
      Thomson, V. A., Lebrasseur, O., Austin, J. J., Hunt, T. L., Burney, D. A., Denham, T., Rawlence, N. J., Wood, J. R., Gongora, J., & Flink, L. G. (2014). Using ancient DNA to study the origins and dispersal of ancestral Polynesian chickens across the Pacific. Proceedings of the National Academy of Sciences of the United States of America, 111(13), 4826–4831.
      Van der Auwera, G. A., Carneiro, M. O., Hartl, C., Poplin, R., Del Angel, G., Levy‐Moonshine, A., Jordan, T., Shakir, K., Roazen, D., Thibault, J., & Banks, E. (2013). From FastQ data to high‐confidence variant calls: The genome analysis toolkit best practices pipeline. Current Protocols in Bioinformatics, 43(1110), 11.10.1–11.10.33.
      Voight, B. F., Kudaravalli, S., Wen, X., & Pritchard, J. K. (2006). A map of recent positive selection in the human genome. PLoS Biology, 4(3), e72.
      von Schantz, T., Tufvesson, M., Göransson, G., Grahn, M., Wilhelmson, M., & Wittzell, H. (1995). Artificial selection for increased comb size and its effects on other sexual characters and viability in Gallus domesticus (the domestic chicken). Heredity, 75(5), 518–529.
      Whelan, R., St Clair, D., Mustard, C. J., Hallford, P., & Wei, J. (2018). Study of novel autoantibodies in schizophrenia. Schizophrenia Bulletin, 44(6), 1341–1349.
      Wickham, H., Averick, M., Bryan, J., Chang, W., McGowan, L. D. A., François, R., Grolemund, G., Hayes, A., Henry, L., & Hester, J. (2019). Welcome to the Tidyverse. Journal of Open Source Software, 4(43), 1686.
      Wright, D. (2015). The genetic architecture of domestication in animals. Bioinformatics and Biology Insights, 9(Suppl 4), 11–20.
      Wright, D., Henriksen, R., & Johnsson, M. (2020). Defining the Domestication Syndrome: Comment on Lord et al. 2020. Trends in Ecology & Evolution, 35, 1059–1060.
      Wright, D., Kerje, S., Brändström, H., Schütz, K., Kindmark, A., Andersson, L., Jensen, P., & Pizzari, T. (2008). The genetic architecture of a female sexual ornament. Evolution, 62, 86–98.
      Young, K. M. (2014). Everyone knows the game: Legal consciousness in the Hawaiian cockfight. Law & Society Review, 48(3), 499–530.
    • Grant Information:
      772874 H2020 European Research Council; 302790 Vetenskapsrådet
    • Contributed Indexing:
      Keywords: adaptive evolution; feralisation; invasion biology; population genomics
    • Publication Date:
      Date Created: 20240330 Date Completed: 20241017 Latest Revision: 20241017
    • Publication Date:
      20241017
    • Accession Number:
      10.1111/mec.17336
    • Accession Number:
      38553993