Salt and heat stress enhances hydrogen production in cyanobacteria.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer Country of Publication: Netherlands NLM ID: 100954728 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1573-5079 (Electronic) Linking ISSN: 01668595 NLM ISO Abbreviation: Photosynth Res Subsets: MEDLINE
    • Publication Information:
      Publication: 2005- : Dordrecht : Springer
      Original Publication: Hague ; Boston : W. Junk, 1980-
    • Subject Terms:
    • Abstract:
      Cyanobacteria are among the most suitable organisms for the capture of excessive amounts of CO 2 and can be grown in extreme environments. In our research we use the single-celled freshwater cyanobacteria Synechococcus elongatus PCC7942 PAMCOD strain and Synechocystis sp. PCC6714 for the production of carbohydrates and hydrogen. PAMCOD strain and Synechocystis sp. PCC6714 synthesize sucrose when exposed to salinity stress, as their main compatible osmolyte. We examined the cell proliferation rate and the sucrose accumulation in those two different strains of cyanobacteria under salt (0.4 M NaCl) and heat stress (35 0 C) conditions. The intracellular sucrose (mol sucrose content per Chl a) was found to increase by 50% and 108% in PAMCOD strain and Synechocystis sp. PCC6714 cells, respectively. As previously reported, PAMCOD strain has the ability to produce hydrogen through the process of dark anaerobic fermentation (Vayenos D, Romanos GE, Papageorgiou GC, Stamatakis K (2020) Photosynth Res 146, 235-245). In the present study, we demonstrate that Synechocystis sp. PCC6714 has also this ability. We further examined the optimal conditions during the dark fermentation of PAMCOD and Synechocystis sp. PCC6714 regarding H 2 formation, increasing the PAMCOD H 2 productivity from 2 nmol H 2 h - 1 mol Chl a - 1 to 23 nmol H 2 h - 1 mol Chl a - 1 . Moreover, after the dark fermentation, the cells demonstrated proliferation in both double BG-11 and BG-11 medium enriched in NaNO 3 , thus showing the sustainability of the procedure.
      (© 2024. The Author(s), under exclusive licence to Springer Nature B.V.)
    • References:
      Allakhverdiev SI, Murata N (2008) Salt stress inhibits photosystems II and I in cyanobacteria. Photosynth Res 98:529–539. https://doi.org/10.1007/s11120-008-9334-x. (PMID: 10.1007/s11120-008-9334-x18670904)
      Allakhverdiev SI, Hayashi H, Nishiyama Y, Ivanov AG, Aliev JA, Klimov VV, Murata N, Carpentier R (2003) Glycinebetaine protects the D1/D2/Cytb559 complex of photosystem II against photo-induced and heat-induced inactivation. J Plant Physiol 160:41–49. https://doi.org/10.1078/0176-1617-00845. (PMID: 10.1078/0176-1617-0084512685044)
      Antonopoulou G, Ntaikou I, Stamatelatou K, Lyberatos G (2011) Biological and fermentative production of hydrogen. Handb Biofuels Prod Woodhead Publishing 305–346. https://doi.org/10.1533/9780857090492.2.305.
      Aoyama K, Uemura I, Miyake J, Asada Y (1997) Fermentative metabolism to produce hydrogen gas and organic compounds in a cyanobacterium, Spirulina platensis. J Ferm Bioengin 83:17–20. https://doi.org/10.1016/S0922-338X(97)87320-5. (PMID: 10.1016/S0922-338X(97)87320-5)
      Asada Y, Kawamura S, Ho KK (1987) Hydrogenase from the unicellular cyanobacterium, Microcystis aeruginosa. Phytochemistry 26:637–640. (PMID: 10.1016/S0031-9422(00)84756-1)
      Blumwald E, Mehlhorn RJ, Packer L (1983) Ionic osmoregulation during salt adaptation of the Cyanobacterium Synechococcus 6311. Plant Physiol 73:377–380. https://doi.org/10.1104/pp.73.2.377. (PMID: 10.1104/pp.73.2.377166632231066468)
      Bolatkhan K, Kossalbayev BD, Zayadan BK, Tomo T, Veziroglu TN, Allakhverdiev SI (2019) Hydrogen production from phototrophic microorganisms: reality and perspectives. Ιnter J Hydrogen Energy 44:5799–5811. (PMID: 10.1016/j.ijhydene.2019.01.092)
      Broussos P-I, Romanos GE, Stamatakis K (2023) H 2 production by the unicellular freshwater cyanobacterium Synechococcus elongatus PCC7942 PAMCOD strain. Inter J Hydrogen Energy (in press).
      Calli B, Schoenmaekers K, Vanbroekhoven K, Diels L (2008) Dark Fermentative H2 production from xylose and lactose. Effects of on-line pH control. Int J Hydrogen Energy 33:522–530. https://doi.org/10.1016/j.ijhydene.2007.10.012. (PMID: 10.1016/j.ijhydene.2007.10.012)
      Das D, Veziroglu TN (2001) Hydrogen production by biological processes: a survey of literature. Int J Hydrogen Energy 26:13–28. (PMID: 10.1016/S0360-3199(00)00058-6)
      Deshnium P, Los DA, Hayashi H, Mustardy L, Murata N (1995) Transformation of Synechococcus with a gene for choline oxidase enhances tolerance to salt stress. Plant Mol Biol 29: 897–907, https://doi.org/10.1007/BF00014964.
      Du W, Liang F, Duan Y, Tan X, Lu X (2013) Exploring the photosynthetic production capacity of sucrose by cyanobacteria. Metab Engin 19:17–25. https://doi.org/10.1016/j.ymben.2013.05.001. (PMID: 10.1016/j.ymben.2013.05.001)
      Duan Y, Luo Q, Liang F, Lu X (2016) Sucrose secreted by the engineered cyanobacterium and its fermentability. J Ocean Univ China 15:890–896. (PMID: 10.1007/s11802-016-3007-8)
      Ducat DC, Avelar-Rivas JA, Way JC, Silver PA (2012) Rerouting carbon flux to enhance photosynthetic productivity. Appl Environ Microbiol 78:2660–2668. (PMID: 10.1128/AEM.07901-11223072923318813)
      Ellinas Κ, Kefallinou D, Stamatakis K, Gogolides E (2017) Is there a threshold in the antibacterial action of superhydrophobic surfaces? ACS Appl Mater Inter 9:39781–39789. https://doi.org/10.1021/acsami.7b11402 . Tserepi. A. (PMID: 10.1021/acsami.7b11402)
      Erdmann N, Hagemann M (2001) Salt Acclimation of Algae and Cyanobacteria: a comparison. In: Rai LC, Gaur JP (eds) Algal Adaptation to Environmental stresses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-59491-5_11. (PMID: 10.1007/978-3-642-59491-5_11)
      Fang HHP, Liu H (2002) Effect of pH on hydrogen production from glucose by a mixed culture. Biores Tech 82:87–93. https://doi.org/10.1016/S0960-8524(01)00110-9. (PMID: 10.1016/S0960-8524(01)00110-9)
      Frenkel A, Gaffron H, Battley EH (1950) Photosynthesis and photoreduction by the Blue Green Alga, Synechococcus Elongatus. Näg Biol Bull 99(2):157–162. https://doi.org/10.2307/1538735. (PMID: 10.2307/153873514791416)
      Hagemann M (2011) Molecular biology of cyanobacterial salt acclimation. FEMS Microbiol Rev 35:87–123. (PMID: 10.1111/j.1574-6976.2010.00234.x20618868)
      Hallenbeck P, Benemann JR (2002) Biological hydrogen production: fundamentals and limiting processes. Int J Hydrogen Energy 7:1185–1194. (PMID: 10.1016/S0360-3199(02)00131-3)
      Kayfeci M, Keçebaş A, Bayat M (2019) Hydrogen production. Solar Hydrogen Prod Processes Syst Technol 3:45–83.
      Kolman MA, Nishi CN, Perez-Cenci M, Salerno GL (2015) Sucrose in Cyanobacteria: from a salt-response molecule to play a key role in Nitrogen fixation. Life 5:102–126. https://doi.org/10.3390/life5010102. (PMID: 10.3390/life5010102255692394390843)
      Kopf M, Klähn S, Pade N, Weingärtner C, Hagemann M, Voß B, Hess WR (2014) Comparative genome analysis of the closely related Synechocystis strains PCC 6714 and PCC 6803. DNA Res 21:255–266. https://doi.org/10.1093/dnares/dst055. (PMID: 10.1093/dnares/dst055244088764060947)
      Ladas NP, Papageorgiou GC (2000) Cell turgor: a critical factor for the proliferation of cyanobacteria at unfavorable salinity. Photosynth Res 65:155–164. https://doi.org/10.1023/A:1006423221150. (PMID: 10.1023/A:100642322115016228482)
      Lama MJ, Serra JL, Rao KK, Hall DO (1979) Isolation and characterization of the hydrogenase activity from the non-heterocystous cyanobacterium Spirulina maxima. FEBS Lett 98:2: 342–346. https://doi.org/10.1016/0014-5793(79)80213-6. (PMID: 10.1016/0014-5793(79)80213-6)
      Levin D (2004) Biohydrogen production: prospects and limitations to practical application. Int J Hydrogen Energy 29:173–185. https://doi.org/10.1016/s0360-3199(03)00094-6. (PMID: 10.1016/s0360-3199(03)00094-6)
      Manish S, Banerjee R (2008) Comparison of biohydrogen production processes. Int J Hydrogen Energy 33:279–286.  https://doi.org/10.1016/j.ijhydene.2007.07.026. (PMID: 10.1016/j.ijhydene.2007.07.026)
      McCay MH, Shafiee S (2020) Hydrogen: an energy carrier. In: Letcher TM (ed) Future energy. Improved, sustainable and clean options for our planet. Elsevier, pp 475–493.
      Miller GL (1959) Use of dinitrosalicylic acid reagent for determination of reducing sugar. Anal Chem 31:426–428. (PMID: 10.1021/ac60147a030)
      Moran P (1982) Formulae for determination of chlorophyllous pigments extracted with N,N-dimethyl-formamide. Plant Physiol 69:1376–1381. (PMID: 10.1104/pp.69.6.137616662407426422)
      Pade N, Michalik D, Ruth W, Belkin N, Hess WR, Berman-Frank I, Hagemann M (2016) Trimethylated homoserine functions as the major compatible solute in the globally significant oceanic cyanobacterium Trichodesmium. Proc Natl Acad Sci U S A 113:13191–13196. (PMID: 10.1073/pnas.1611666113277995275135383)
      Peschek GA (1979) Evidence for two functionally distinct hydrogenases in Anacystis nidulans. Arch Microbiol 123:81–92. (PMID: 10.1007/BF00403505)
      Qiao C, Duan Y, Zhang M, Hagemann M, Luo Q, Lu X (2018) Effects of reduced and enhanced glycogen pools on Salt-Induced sucrose production in a sucrose-secreting strain of Synechococcus elongatus PCC 7942. Appl Environ Microbiol 84. https://doi.org/10.1128/AEM.02023-17 ASM Journals.
      Reed RH, Stewart WDP (1985) Osmotic adjustment and organic solute accumulation in unicellular cyanobacteria from freshwater and marine habitats. Mar Biol 88:1–9. (PMID: 10.1007/BF00393037)
      Reed RH, Chudek JA, Foster R et al (1984) Osmotic adjustment in cyanobacteria from hypersaline environments. Arch Microbiol 138:333–337. https://doi.org/10.1007/BF00410900. (PMID: 10.1007/BF00410900)
      Reed RH, Borowitzka LJ, Mackay MA, Chudek JA, Foster R, Warr SRC, Moore DJ, Stewart WDP (1986) Organic solute accumulation in osmotically stressed cyanobacteria. FEMS Microbiol Rev 39:51–56. (PMID: 10.1111/j.1574-6968.1986.tb01842.x)
      Ren N, Wang B, Huang J-C (1997) Ethanol-type fermentation from carbohydrate in high rate acidogenic reactor. Biotech Bioengin 54:428–433. https://doi.org/10.1002/(SICI)1097-0290(19970605)54:5%3C428::AID-BIT3%3E3.0.CO;2-G. (PMID: 10.1002/(SICI)1097-0290(19970605)54:5<428::AID-BIT3>3.0.CO;2-G)
      Rippka R, Deruelles J, Waterbury JB, Herdman M, Stanier RT (1979) Generic assignments, strain histories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61.
      Sadvakasova AK, Kossalbayev BD, Zayadan BK, Bolatkhan K, Alwasel S, Najafpour MM, Tomo T, Allakhverdiev SI (2020) Bioprocesses of hydrogen production by cyanobacteria cells and possible ways to increase their productivity. Ren Sust En Rev 133:110054. https://doi.org/10.1016/j.rser.2020.110054. (PMID: 10.1016/j.rser.2020.110054)
      Santos-Merino M, Yun L, Ducat DC (2023) Cyanobacteria as cell factories for the photosynthetic production of sucrose. Front Microb 14. https://doi.org/10.3389/fmicb.2023.1126032.
      Show K-Y, Yan Y-G, Lee D-J (2019) Biohydrogen production from algae: perspectives, challenges, and prospects. Biomass, Biofuels, Biochemicals. Biofuels Algae 13:325–343. https://doi.org/10.1016/B978-0-444-64192-2.00013-5. (PMID: 10.1016/B978-0-444-64192-2.00013-5)
      Stamatakis C, Papageorgiou GC (1993) Stabilization of Photosystem II particles isolated from the thermophilic cyanobacterium Phormidium laminosum with glycinebetaine and glycerol. Biochim Biophys Acta 1183:333–338. (PMID: 10.1016/0005-2728(93)90236-9)
      Stamatakis K, Papageorgiou GC (2001) The osmolality of the cell suspension regulates phycobilisome-to-photosystem I transfers in cyanobacteria. Biochim Biophys Acta (Bioenergetics) 1506:172–181. (PMID: 10.1016/S0005-2728(01)00192-X)
      Stamatakis K, Ladas N, Papageorgiou GC (2005) Facilitated water transport in cyanobacterium Synechococcus sp. PCC 7942 studied by phycobilisome-sensitized chlorophyll a fluorescence. Photosynth Res 84:181–185. (PMID: 10.1007/s11120-004-7175-916049772)
      Timasheff SN (1993) The control of protein stability and association by weak interactions with water how do solvents affect these processes? Annu Rev Biophys Biomol Struct 22:67–97.
      Vargas W, Cumino A, Salerno GL (2003) Cyanobacterial alkaline/neutral invertases. Origin of sucrose hydrolysis sucrose hydrolysis in the plant cytosol? Planta 216:951–960. https://doi.org/10.1007/s00425-002-0943-x. (PMID: 10.1007/s00425-002-0943-x12687362)
      Vayenos D, Romanos GE, Papageorgiou GC (2020) Synechococcus elongatus PCC7942: a cyanobacterium cell factory for producing useful chemicals and fuels under abiotic stress conditions. Photosynth Res 146:235–245. https://doi.org/10.1007/s11120-020-00747-6. (PMID: 10.1007/s11120-020-00747-632301003)
      Vignais PN, Billoud B, Meyer J (2001) Classification and phylogeny of hydrogenases. FEMS Microbiol Rev 25:455–501. (PMID: 10.1016/S0168-6445(01)00063-811524134)
      Wang J, Wan W (2009) Factors influencing fermentative hydrogen production: a review. Int J Hydrogen Energy 34:799–811. (PMID: 10.1016/j.ijhydene.2008.11.015)
      Warr SRC, Reed RH, Stewart WDP (1985) Carbohydrate accumulation in osmotically stressed cyanobacteria (blue-green algae): interactions of temperature and salinity. New Phytol 100:285–292. https://doi.org/10.1111/j.1469-8137.1985.tb02779.x. (PMID: 10.1111/j.1469-8137.1985.tb02779.x)
      Yadav P, Singh RP, Rana S, Joshi D, Kumar D, Bhardwaj N, Gupta RK, Kumar A (2022) Mechanisms of stress tolerance in Cyanobacteria under Extreme conditions. Stresses 2:531–549. https://doi.org/10.3390/stresses2040036. (PMID: 10.3390/stresses2040036)
    • Contributed Indexing:
      Keywords: Synechococcus elongatus PCC7942 PAMCOD strain; Synechocystis sp. PCC6714 Biohydrogen; Cyanobacteria; Dark fermentation
    • Accession Number:
      7YNJ3PO35Z (Hydrogen)
      57-50-1 (Sucrose)
      451W47IQ8X (Sodium Chloride)
    • Subject Terms:
      Synechococcus elongatus
    • Publication Date:
      Date Created: 20240328 Date Completed: 20240724 Latest Revision: 20240724
    • Publication Date:
      20240725
    • Accession Number:
      10.1007/s11120-024-01098-2
    • Accession Number:
      38546812