Coupling of nanostraws with diverse physicochemical perforation strategies for intracellular DNA delivery.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: BioMed Central Country of Publication: England NLM ID: 101152208 Publication Model: Electronic Cited Medium: Internet ISSN: 1477-3155 (Electronic) Linking ISSN: 14773155 NLM ISO Abbreviation: J Nanobiotechnology Subsets: MEDLINE
    • Publication Information:
      Original Publication: London : BioMed Central, 2003-
    • Subject Terms:
    • Abstract:
      Effective intracellular DNA transfection is imperative for cell-based therapy and gene therapy. Conventional gene transfection methods, including biochemical carriers, physical electroporation and microinjection, face challenges such as cell type dependency, low efficiency, safety concerns, and technical complexity. Nanoneedle arrays have emerged as a promising avenue for improving cellular nucleic acid delivery through direct penetration of the cell membrane, bypassing endocytosis and endosome escape processes. Nanostraws (NS), characterized by their hollow tubular structure, offer the advantage of flexible solution delivery compared to solid nanoneedles. However, NS struggle to stably self-penetrate the cell membrane, resulting in limited delivery efficiency. Coupling with extra physiochemical perforation strategies is a viable approach to improve their performance. This study systematically compared the efficiency of NS coupled with polyethylenimine (PEI) chemical modification, mechanical force, photothermal effect, and electric field on cell membrane perforation and DNA transfection. The results indicate that coupling NS with PEI modification, mechanical force, photothermal effects provide limited enhancement effects. In contrast, NS-electric field coupling significantly improves intracellular DNA transfection efficiency. This work demonstrates that NS serve as a versatile platform capable of integrating various physicochemical strategies, while electric field coupling stands out as a form worthy of primary consideration for efficient DNA transfection.
      (© 2024. The Author(s).)
    • References:
      Small. 2022 Sep;18(36):e2202303. (PMID: 35770803)
      ACS Nano. 2023 Feb 14;17(3):2101-2113. (PMID: 36479877)
      Proc Natl Acad Sci U S A. 2019 Apr 16;116(16):7899-7904. (PMID: 30923112)
      ACS Nano. 2013 May 28;7(5):4351-8. (PMID: 23597131)
      ACS Appl Mater Interfaces. 2023 Nov 1;15(43):50015-50033. (PMID: 37853502)
      Adv Mater. 2019 Mar;31(12):e1807795. (PMID: 30721538)
      Nano Lett. 2012 Nov 14;12(11):5815-20. (PMID: 23030066)
      Adv Mater. 2020 Mar;32(9):e1903862. (PMID: 31944430)
      Adv Mater. 2015 Nov 25;27(44):7145-9. (PMID: 26445223)
      Nat Protoc. 2021 Oct;16(10):4539-4563. (PMID: 34426708)
      ACS Nano. 2012 Jun 26;6(6):4940-6. (PMID: 22632128)
      Nat Nanotechnol. 2021 Nov;16(11):1281-1291. (PMID: 34675410)
      ACS Appl Mater Interfaces. 2019 Nov 27;11(47):43936-43948. (PMID: 31696695)
      Small. 2023 Oct;19(43):e2303088. (PMID: 37381646)
      Nat Rev Genet. 2003 May;4(5):346-58. (PMID: 12728277)
      Nat Commun. 2014 Jul 29;5:4466. (PMID: 25072981)
      Nano Lett. 2019 Oct 9;19(10):7201-7209. (PMID: 31557044)
      Cell. 1980 Nov;22(2 Pt 2):479-88. (PMID: 6256082)
      Theranostics. 2020 Apr 15;10(12):5532-5549. (PMID: 32373229)
      Adv Healthc Mater. 2016 May;5(10):1157-68. (PMID: 26992125)
      Nature. 2016 Oct 12;538(7624):183-192. (PMID: 27734871)
      Biosensors (Basel). 2022 Jul 13;12(7):. (PMID: 35884325)
      Sci Adv. 2015 Aug 14;1(7):e1500454. (PMID: 26601238)
      Nanomicro Lett. 2020 Sep 27;12(1):185. (PMID: 34138203)
      Sci Rep. 2016 Apr 12;6:24127. (PMID: 27067121)
      Nature. 1989 Jan 26;337(6205):387-8. (PMID: 2463491)
      ACS Appl Mater Interfaces. 2020 Jul 15;12(28):31054-31078. (PMID: 32559060)
      Small. 2011 Jul 18;7(14):2094-100. (PMID: 21695782)
      Nano Lett. 2013;13(12):6002-8. (PMID: 24237230)
      Small. 2021 Feb;17(7):e2006421. (PMID: 33502091)
      Proc Natl Acad Sci U S A. 2013 Feb 5;110(6):2082-7. (PMID: 23341631)
      Small. 2019 Nov;15(47):e1904819. (PMID: 31599099)
      Acc Chem Res. 2021 Nov 2;54(21):4001-4011. (PMID: 34668716)
      ACS Sens. 2018 Sep 28;3(9):1675-1682. (PMID: 30148355)
      Curr Opin Biotechnol. 2008 Oct;19(5):506-10. (PMID: 18725294)
      Biomaterials. 2012 Jun;33(19):4928-35. (PMID: 22469293)
      EMBO J. 1982;1(7):841-5. (PMID: 6329708)
      ACS Nano. 2021 Nov 23;15(11):16982-17015. (PMID: 34181394)
      ACS Nano. 2022 Nov 22;16(11):19363-19372. (PMID: 36350673)
      Nanotechnology. 2009 Apr 8;20(14):145304. (PMID: 19420523)
      Chem Rev. 2018 Aug 22;118(16):7409-7531. (PMID: 30052023)
    • Grant Information:
      62105380 National Natural Science Foundation of China; 22007105 National Natural Science Foundation of China; 32171456 National Natural Science Foundation of China; 32270993 National Natural Science Foundation of China; T2225010 National Natural Science Foundation of China; 2021M693686 China Postdoctoral Science Foundation; 2022YFC2305800 National Key R&D Program of China; 2023A1515011267 Basic and Applied Basic Research Foundation of Guangdong Province; 2023-skllmd-09 Open Fund of the State Key Laboratory of Luminescent Materials and Devices; 2023-K09 Open Research Fund of State Key Laboratory of Digital Medical Engineering
    • Contributed Indexing:
      Keywords: Cell penetration; Intracellular delivery; Nano-electroporation; Nanostraw; Physical field coupling
    • Accession Number:
      9007-49-2 (DNA)
      9002-98-6 (Polyethyleneimine)
    • Publication Date:
      Date Created: 20240327 Date Completed: 20240328 Latest Revision: 20240329
    • Publication Date:
      20240329
    • Accession Number:
      PMC10964692
    • Accession Number:
      10.1186/s12951-024-02392-w
    • Accession Number:
      38532389