The importance of decomposing periodic and aperiodic EEG signals for assessment of brain function in a global context.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Wiley Interscience Country of Publication: United States NLM ID: 0164074 Publication Model: Print Cited Medium: Internet ISSN: 1098-2302 (Electronic) Linking ISSN: 00121630 NLM ISO Abbreviation: Dev Psychobiol Subsets: MEDLINE
    • Publication Information:
      Publication: New York, NY : Wiley Interscience
      Original Publication: New York, Interscience Publishers.
    • Subject Terms:
    • Abstract:
      Measures of early neuro-cognitive development that are suitable for use in low-resource settings are needed to enable studies of the effects of early adversity on the developing brain in a global context. These measures should have high acquisition rates and good face and construct validity. Here, we investigated the feasibility of a naturalistic electroencephalography (EEG) paradigm in a low-resource context during childhood. Additionally, we examined the sensitivity of periodic and aperiodic EEG metrics to social and non-social stimuli. We recorded simultaneous 20-channel EEG and eye-tracking in 72 children aged 4-12 years (45 females) while they watched videos of women singing nursery rhymes and moving toys, selected to represent familiar childhood experiences. These measures were part of a feasibility study that assessed the feasibility and acceptability of a follow-up data collection of the South African Safe Passage Study, which tracks environmental adversity and brain and cognitive development from before birth up until childhood. We examined whether data quantity and quality varied with child characteristics and the sensitivity of varying EEG metrics (canonical band power in the theta and alpha band and periodic and aperiodic features of the power spectra). We found that children who completed the EEG and eye-tracking assessment were, in general, representative of the full cohort. Data quantity was higher in children with greater visual attention to the stimuli. Out of the tested EEG metrics, periodic measures in the theta frequency range were most sensitive to condition differences, compared to alpha range measures and canonical and aperiodic EEG measures. Our results show that measuring EEG during ecologically valid social and non-social stimuli is feasible in low-resource settings, is feasible for most children, and produces robust indices of social brain function. This work provides preliminary support for testing longitudinal links between social brain function, environmental factors, and emerging behaviors.
      (© 2024 The Authors. Developmental Psychobiology published by Wiley Periodicals LLC.)
    • References:
      Ahmad, J., Ellis, C., Leech, R., Voytek, B., Garces, P., Jones, E., Buitelaar, J., Loth, E., dos Santos, F. P., Amil, A. F., Verschure, P. F. M. J., Murphy, D., & McAlonan, G. (2022). From mechanisms to markers: Novel noninvasive EEG proxy markers of the neural excitation and inhibition system in humans. Translational Psychiatry, 12(1), 467. https://doi.org/10.1038/s41398‐022‐02218‐z.
      Baker, E. K., Arpone, M., Vera, S. A., Bretherton, L., Ure, A., Kraan, C. M., Bui, M., Ling, L., Francis, D., Hunter, M. F., Elliott, J., Rogers, C., Field, M. J., Cohen, J., Maria, L. S., Faundes, V., Curotto, B., Morales, P., Trigo, C., … Godler, D. E. (2019). Intellectual functioning and behavioural features associated with mosaicism in fragile X syndrome. Journal of Neurodevelopmental Disorders, 11(1), 41. https://doi.org/10.1186/s11689‐019‐9288‐7.
      Begum‐Ali, J., Goodwin, A., Mason, L., Pasco, G., Charman, T., Johnson, M. H., Jones, E. J. H., & the STAARS Team. (2022). Altered theta–beta ratio in infancy associates with family history of ADHD and later ADHD‐relevant temperamental traits. Journal of Child Psychology and Psychiatry, 63(9), 1057–1067. https://doi.org/10.1111/jcpp.13563.
      Bhavnani, S., Lockwood Estrin, G., Haartsen, R., Jensen, S. K. G., Gliga, T., Patel, V., & Johnson, M. H. (2021). EEG signatures of cognitive and social development of preschool children–a systematic review. PLoS One, 16(2), e0247223. https://doi.org/10.1371/journal.pone.0247223.
      Bishop, S. L., Guthrie, W., Coffing, M., & Lord, C. (2011). Convergent validity of the Mullen Scales of Early Learning and the differential ability scales in children with autism spectrum disorders. American Journal on Intellectual and Developmental Disabilities, 116(5), 331–343. https://doi.org/10.1352/1944‐7558‐116.5.331.
      Bitta, M., Kariuki, S. M., Abubakar, A., & Newton, C. R. J. C. (2018). Burden of neurodevelopmental disorders in low and middle‐income countries: A systematic review and meta‐analysis. Wellcome Open Research, 2, 121. https://doi.org/10.12688/wellcomeopenres.13540.3.
      Brainard, D. H. (1997) The Psychophysics Toolbox, Spatial Vision 10:433‐436.
      Brito, N. H., Elliott, A. J., Isler, J. R., Rodriguez, C., Friedrich, C., Shuffrey, L. C., & Fifer, W. P. (2019). Neonatal EEG linked to individual differences in socioemotional outcomes and autism risk in toddlers. Developmental Psychobiology, 61(8), 1110–1119. https://doi.org/10.1002/dev.21870.
      Brooker, R. J., Bates, J. E., Buss, K. A., Canen, M. J., Dennis‐Tiwary, T. A., Gatzke‐Kopp, L. M., Hoyniak, C., Klein, D. N., Kujawa, A., Lahat, A., Lamm, C., Moser, J. S., Petersen, I. T., Tang, A., Woltering, S., & Schmidt, L. A. (2019). Conducting event‐related potential (ERP) research with young children. Journal of Psychophysiology, 34(3), 137–158. https://doi.org/10.1027/0269‐8803/A000243.
      Carter Leno, V., Begum‐Ali, J., Goodwin, A., Mason, L., Pasco, G., Pickles, A., Garg, S., Green, J., Charman, T., Johnson, M. H., Jones, E. J. H., Vassallo, G., Burkitt‐Wright, E., Eelloo, J., Gareth Evans, D., West, S., Hupton, E., Lewis, L., & Robinson, L., … STAARS Teams. (2022). Infant excitation/inhibition balance interacts with executive attention to predict autistic traits in childhood. Molecular Autism, 13(1), 46. https://doi.org/10.1186/s13229‐022‐00526‐1.
      Carter Leno, V., Pickles, A., van Noordt, S., Huberty, S., Desjardins, J., Webb, S. J., & Elsabbagh, M. (2021). 12‐Month peak alpha frequency is a correlate but not a longitudinal predictor of non‐verbal cognitive abilities in infants at low and high risk for autism spectrum disorder. Developmental Cognitive Neuroscience, 48, 100938. https://doi.org/10.1016/j.dcn.2021.100938.
      Carter Leno, V., Tomlinson, S. B., Chang, S.‐A. A., Naples, A. J., & McPartland, J. C. (2018). Resting‐state alpha power is selectively associated with autistic traits reflecting behavioral rigidity. Scientific Reports, 8(1), 11982. https://doi.org/10.1038/s41598‐018‐30445‐2.
      Cellier, D., Riddle, J., Petersen, I., & Hwang, K. (2021). The development of theta and alpha neural oscillations from ages 3 to 24 years. Developmental Cognitive Neuroscience, 50, 100969. https://doi.org/10.1016/j.dcn.2021.100969.
      Cluver, C., Charles, W., van der Merwe, C., Bezuidenhout, H., Nel, D., Groenewald, C., Brink, L., Hesselman, S., Bergman, L., & Odendaal, H. (2019). The association of prenatal alcohol exposure on the cognitive abilities and behaviour profiles of 4‐year‐old children: A prospective cohort study. BJOG: An International Journal of Obstetrics & Gynaecology, 126(13), 1588–1597. https://doi.org/10.1111/1471‐0528.15947.
      Courchesne, V., Girard, D., Jacques, C., & Soulières, I. (2019). Assessing intelligence at autism diagnosis: Mission impossible? Testability and cognitive profile of autistic preschoolers. Journal of Autism and Developmental Disorders, 49(3), 845–856. https://doi.org/10.1007/s10803‐018‐3786‐4.
      D'angiulli, A., Van Roon, P., Weinberg, J., Oberlander, T., Grunau, R., Hertzman, C., & Maggi, S. (2012). Frontal EEG/ERP correlates of attentional processes, cortisol and motivational states in adolescents from lower and higher socioeconomic status. Frontiers in Human Neuroscience, 6, 306. https://www.frontiersin.org/articles/10.3389/fnhum.2012.00306.
      Dawson, G., Jones, E. J. H., Merkle, K., Venema, K., Lowy, R., Faja, S., Kamara, D., Murias, M., Greenson, J., Winter, J., Smith, M., Rogers, S. J., & Webb, S. J. (2012). Early behavioral intervention is associated with normalized brain activity in young children with autism. Journal of the American Academy of Child & Adolescent Psychiatry, 51(11), 1150–1159. https://doi.org/10.1016/j.jaac.2012.08.018.
      Desjardins, J. A., van Noordt, S., Huberty, S., Segalowitz, S. J., & Elsabbagh, M. (2021). EEG Integrated Platform Lossless (EEG‐IP‐L) pre‐processing pipeline for objective signal quality assessment incorporating data annotation and blind source separation. Journal of Neuroscience Methods, 347, 108961. https://doi.org/10.1016/j.jneumeth.2020.108961.
      Dickinson, A., DiStefano, C., Senturk, D., & Jeste, S. S. (2018). Peak alpha frequency is a neural marker of cognitive function across the autism spectrum. European Journal of Neuroscience, 47(6), 643–651. https://doi.org/10.1111/ejn.13645.
      Donoghue, T., Haller, M., Peterson, E. J., Varma, P., Sebastian, P., Gao, R., Noto, T., Lara, A. H., Wallis, J. D., Knight, R. T., Shestyuk, A., & Voytek, B. (2020). Parameterizing neural power spectra into periodic and aperiodic components. Nature Neuroscience, 23(12), 1655–1665. https://doi.org/10.1038/s41593‐020‐00744‐x.
      Dukes, K. A., Burd, L., Elliott, A. J., Fifer, W. P., Folkerth, R. D., Hankins, G. D. V., Hereld, D., Hoffman, H. J., Myers, M. M., Odendaal, H. J., Signore, C., Sullivan, L. M., Willinger, M., Wright, C., & Kinney, H. C. (2014). The safe passage study: Design, methods, recruitment, and follow‐up approach. Paediatric and Perinatal Epidemiology, 28(5), 455–465. https://doi.org/10.1111/ppe.12136.
      Eeg‐Olofsson, O. (1971). The development of the electroencephalogram in normal children from the age of 1 through 15 years –14 and 6 Hz positive spike phenomenon. Neuropädiatrie, 2(4), 405–427. https://doi.org/10.1055/s‐0028‐1091792.
      Finn, E. S., & Bandettini, P. A. (2021). Movie‐watching outperforms rest for functional connectivity‐based prediction of behavior. Neuroimage, 235, 117963. https://doi.org/10.1016/j.neuroimage.2021.117963.
      Gabard‐Durnam, L. J., Wilkinson, C., Kapur, K., Tager‐Flusberg, H., Levin, A. R., & Nelson, C. A. (2019). Longitudinal EEG power in the first postnatal year differentiates autism outcomes. Nature Communications, 10(1), 4188. https://doi.org/10.1038/s41467‐019‐12202‐9.
      Garcés, P., Baumeister, S., Mason, L., Chatham, C. H., Holiga, S., Dukart, J., Jones, E. J. H., Banaschewski, T., Baron‐Cohen, S., Bölte, S., Buitelaar, J. K., Durston, S., Oranje, B., Persico, A. M., Beckmann, C. F., Bougeron, T., Dell'Acqua, F., Ecker, C., & Moessnang, C., … The EU‐AIMS LEAP group authorship. (2022). Resting state EEG power spectrum and functional connectivity in autism: A cross‐sectional analysis. Molecular Autism, 13(1), 22. https://doi.org/10.1186/s13229‐022‐00500‐x.
      Gasser, T., Verleger, R., Bächer, P., & Sroka, L. (1988). Development of the EEG of school‐age children and adolescents. I. Analysis of band power. Electroencephalography and Clinical Neurophysiology, 69(2), 91–99. https://doi.org/10.1016/0013‐4694(88)90204‐0.
      Gladstone, M., Lancaster, G., Umar, E., Nyirenda, M., Kayira, E., Van Den Broek, N., & Smyth, R. L. (2010). Perspectives of normal child development in rural Malawi—A qualitative analysis to create a more culturally appropriate developmental assessment tool. Child: Care, Health and Development, 36(3), 346–353. https://doi.org/10.1111/j.1365‐2214.2009.01008.x.
      Goncharova, I. I., McFarland, D. J., Vaughan, T. M., & Wolpaw, J. R. (2003). EMG contamination of EEG: Spectral and topographical characteristics. Clinical Neurophysiology, 114(9), 1580–1593. https://doi.org/10.1016/S1388‐2457(03)00093‐2.
      Goodman. (1997). The Strengths and Difficulties Questionnaire: A research note. Journal of Child Psychology and Psychiatry, 38(5), 581–586. https://acamh.onlinelibrary.wiley.com/doi/full/10.1111/j.1469‐7610.1997.tb01545.x.
      Grantham‐McGregor, S., Cheung, Y. B., Cueto, S., Glewwe, P., Richter, L., & Strupp, B. (2007). Developmental potential in the first 5 years for children in developing countries. The Lancet, 369(9555), 60–70. https://doi.org/10.1016/S0140‐6736(07)60032‐4.
      Gui, A., Throm, E. V., da Costa, P. F., Haartsen, R., Leech, R., & Jones, E. J. H. (2022). Proving and improving the reliability of infant research with neuroadaptive Bayesian optimization. Infant and Child Development, 31(5), e2323. https://doi.org/10.1002/icd.2323.
      Haartsen, R., Charman, T., Pasco, G., Johnson, M. H., & Jones, E. J. H. (2022). Modulation of EEG theta by naturalistic social content is not altered in infants with family history of autism. Scientific Reports, 12(1), 20758. https://doi.org/10.1038/s41598‐022‐24870‐7.
      Haartsen, R., Jones, E. J. H., Orekhova, E. V., Charman, T., Johnson, M. H., Baron‐Cohen, S., Bedford, R., Blasi, A., Bolton, P., Chandler, S., Cheung, C., Davies, K., Elsabbagh, M., Fernandes, J., Gammer, I., Garwood, H., Gliga, T., Guiraud, J., Hudry, K., … Volein, A. (2019). Functional EEG connectivity in infants associates with later restricted and repetitive behaviours in autism; a replication study. Translational Psychiatry, 9, 66. https://doi.org/10.1038/s41398‐019‐0380‐2.
      Haartsen, R., Mason, L., Braithwaite, E. K., Del Bianco, T., Johnson, M. H., & Jones, E. J. H. (2021). Reliability of an automated gaze‐controlled paradigm for capturing neural responses during visual and face processing in toddlerhood. Developmental Psychobiology, 63(7), e22157. https://doi.org/10.1002/dev.22157.
      He, W., Donoghue, T., Sowman, P. F., Seymour, R. A., Brock, J., Crain, S., Voytek, B., & Hillebrand, A. (2019). Co‐increasing neuronal noise and beta power in the developing brain. bioRxiv. https://doi.org/10.1101/839258.
      Hill, A. T., Clark, G. M., Bigelow, F. J., Lum, J. A. G., & Enticott, P. G. (2022). Periodic and aperiodic neural activity displays age‐dependent changes across early‐to‐middle childhood. Developmental Cognitive Neuroscience, 54, 101076. https://doi.org/10.1016/j.dcn.2022.101076.
      Huberty, S., Carter Leno, V., van Noordt, S. J. R., Bedford, R., Pickles, A., Desjardins, J. A., Webb, S. J., Team, T. B., & Elsabbagh, M. (2021). Association between spectral electroencephalography power and autism risk and diagnosis in early development. Autism Research, 14(7), 1390–1403. https://doi.org/10.1002/aur.2518.
      Jensen, S. K. G., Xie, W., Kumar, S., Haque, R., Petri, W. A., & Nelson, C. A. (2021). Associations of socioeconomic and other environmental factors with early brain development in Bangladeshi infants and children. Developmental Cognitive Neuroscience, 50, 100981. https://doi.org/10.1016/j.dcn.2021.100981.
      John, E. R., Ahn, H., Prichep, L., Trepetin, M., Brown, D., & Kaye, H. (1980). Developmental equations for the electroencephalogram. Science, 210(4475), 1255–1258. https://doi.org/10.1126/science.7434026.
      Jones, E. J. H., Mason, L., Begum Ali, J., van den Boomen, C., Braukmann, R., Cauvet, E., Demurie, E., Hessels, R. S., Ward, E. K., Hunnius, S., Bolte, S., Tomalski, P., Kemner, C., Warreyn, P., Roeyers, H., Buitelaar, J., Falck‐Ytter, T., Charman, T., & Johnson, M. H. (2019). Eurosibs: Towards robust measurement of infant neurocognitive predictors of autism across Europe. Infant Behavior and Development, 57, 101316. https://doi.org/10.1016/j.infbeh.2019.03.007.
      Jones, E. J. H., Venema, K., Lowy, R., Earl, R. K., & Webb, S. J. (2015). Developmental changes in infant brain activity during naturalistic social experiences. Developmental Psychobiology, 57(7), 842–853. https://doi.org/10.1002/dev.21336.
      Karalunas, S. L., Ostlund, B. D., Alperin, B. R., Figuracion, M., Gustafsson, H. C., Deming, E. M., Foti, D., Antovich, D., Dude, J., Nigg, J., & Sullivan, E. (2022). Electroencephalogram aperiodic power spectral slope can be reliably measured and predicts ADHD risk in early development. Developmental Psychobiology, 64(3), e22228. https://doi.org/10.1002/dev.22228.
      Katus, L., Hayes, N. J., Mason, L., Blasi, A., McCann, S., Darboe, M. K., Haan, M. d., Moore, S. E., Lloyd‐Fox, S., & Elwell, C. E. (2019). Implementing neuroimaging and eye tracking methods to assess neurocognitive development of young infants in low‐ and middle‐income countries. Gates Open Research, 3, 1113. https://doi.org/10.12688/gatesopenres.12951.2.
      Keller, A. S., Payne, L., & Sekuler, R. (2017). Characterizing the roles of alpha and theta oscillations in multisensory attention. Neuropsychologia, 99, 48–63. https://doi.org/10.1016/j.neuropsychologia.2017.02.021.
      Lau‐Zhu, A., Lau, M. P. H., & McLoughlin, G. (2019). Mobile EEG in research on neurodevelopmental disorders: Opportunities and challenges. Developmental Cognitive Neuroscience, 36, 100635. https://doi.org/10.1016/j.dcn.2019.100635.
      Levin, A. R., Naples, A. J., Scheffler, A. W., Webb, S. J., Shic, F., Sugar, C. A., Murias, M., Bernier, R. A., Chawarska, K., Dawson, G., Faja, S., Jeste, S., Nelson, C. A., McPartland, J. C., & Şentürk, D., & The Autism Biomarkers Consortium for Clinical Trials. (2020). Day‐to‐day test‐retest reliability of EEG profiles in children with autism spectrum disorder and typical development. Frontiers in Integrative Neuroscience, 14, 21. https://doi.org/10.3389/fnint.2020.00021.
      Levin, A. R., Varcin, K. J., O'Leary, H. M., Tager‐Flusberg, H., & Nelson, C. A. (2017). EEG power at 3 months in infants at high familial risk for autism. Journal of Neurodevelopmental Disorders, 9(1), 34. https://doi.org/10.1186/s11689‐017‐9214‐9.
      Lloyd‐Fox, S., Blasi, A., McCann, S., Rozhko, M., Katus, L., Mason, L., Austin, T., Moore, S. E., & Elwell, C. E., & Team, T. B. project. (2019). Habituation and novelty detection fNIRS brain responses in 5‐ and 8‐month‐old infants: The Gambia and UK. Developmental Science, 22(5), e12817. https://doi.org/10.1111/desc.12817.
      Lockwood Estrin, G., Bhavnani, S., Goodwin, A., Arora, R., Divan, G., Haartsen, R., Mason, L., Patel, V., Johnson, M. H., & Jones, E. J. H. (2023). From the lab to the field: Acceptability of using electroencephalography with Indian preschool children. Wellcome Open Research, 7, 99. https://doi.org/10.12688/wellcomeopenres.17334.2.
      Lopes da Silva, F. (2013). EEG and MEG: Relevance to neuroscience. Neuron, 80(5), 1112–1128. https://doi.org/10.1016/j.neuron.2013.10.017.
      Loth, E., Charman, T., Mason, L., Tillmann, J., Jones, E. J. H., Wooldridge, C., Ahmad, J., Auyeung, B., Brogna, C., Ambrosino, S., Banaschewski, T., Baron‐Cohen, S., Baumeister, S., Beckmann, C., Brammer, M., Brandeis, D., Bölte, S., Bourgeron, T., Bours, C., … Buitelaar, J. K. (2017). The EU‐AIMS Longitudinal European Autism Project (LEAP): Design and methodologies to identify and validate stratification biomarkers for autism spectrum disorders. Molecular Autism, 8(1), 24. https://doi.org/10.1186/s13229‐017‐0146‐8.
      Manyukhina, V. O., Prokofyev, A. O., Galuta, I. A., Goiaeva, D. E., Obukhova, T. S., Schneiderman, J. F., Altukhov, D. I., Stroganova, T. A., & Orekhova, E. V. (2022). Globally elevated excitation–inhibition ratio in children with autism spectrum disorder and below‐average intelligence. Molecular Autism, 13(1), 20. https://doi.org/10.1186/s13229‐022‐00498‐2.
      Marshall, P. J., Bar‐Haim, Y., & Fox, N. A. (2002). Development of the EEG from 5 months to 4 years of age. Clinical Neurophysiology, 113(8), 1199–1208. https://doi.org/10.1016/S1388‐2457(02)00163‐3.
      Mason, L., Moessnang, C., Chatham, C., Ham, L., Tillmann, J., Guillaume, D., Claire, E., Leblond, C., CLiquet, F., Bougeron, T., Charman, T., Oakley, B., Banaschewski, T., Meyer‐Lindenberg, A., Baron‐Cohen, S., Bolte, S., Buitelaar, J., Durston, S., Loth, E., … Jones, E. J. H. (2022). The N170 face‐sensitive brain response: Toward a stratification biomarker for ASD. Science Translational Medicine, Advance online publication. https://www.science.org/journal/stm.
      Mathewson, K. J., Jetha, M. K., Drmic, I. E., Bryson, S. E., Goldberg, J. O., & Schmidt, L. A. (2012). Regional EEG alpha power, coherence, and behavioral symptomatology in autism spectrum disorder. Clinical Neurophysiology, 123(9), 1798–1809. https://doi.org/10.1016/j.clinph.2012.02.061.
      McCray, G., McCoy, D., Kariger, P., Janus, M., Black, M. M., Chang, S. M., Tofail, F., Eekhout, I., Waldman, M., Buuren, S. V., Khanam, R., Sazawal, S., Nizar, A., Schönbeck, Y., Zongo, A., Brentani, A., Zhang, Y., Dua, T., Cavallera, V., … Gladstone, M. (2023). The creation of the Global Scales for Early Development (GSED) for children aged 0–3 years: Combining subject matter expert judgements with big data. BMJ Global Health, 8(1), e009827. https://doi.org/10.1136/bmjgh‐2022‐009827.
      McSweeney, M., Morales, S., Valadez, E. A., Buzzell, G. A., & Fox, N. A. (2021). Longitudinal age‐ and sex‐related change in background aperiodic activity during early adolescence. Developmental Cognitive Neuroscience, 52, 101035. https://doi.org/10.1016/j.dcn.2021.101035.
      Meyer, M., Lamers, D., Kayhan, E., Hunnius, S., & Oostenveld, R. (2021). Enhancing reproducibility in developmental EEG research: BIDS, cluster‐based permutation tests, and effect sizes. Developmental Cognitive Neuroscience, 52, 101036. https://doi.org/10.1016/j.dcn.2021.101036.
      Milosavljevic, B., Vellekoop, P., Maris, H., Halliday, D., Drammeh, S., Sanyang, L., Darboe, M. K., Elwell, C., Moore, S. E., & Lloyd‐Fox, S. (2019). Adaptation of the Mullen Scales of Early Learning for use among infants aged 5‐ to 24‐months in rural Gambia. Developmental Science, 22(5), e12808. https://doi.org/10.1111/desc.12808.
      Mullen, E. M. (1995). Mullen Scales of Early Learning. Circle Pines.
      Mundy, P., Fox, N., & Card, J. (2003). EEG coherence, joint attention and language development in the second year. Developmental Science, 6(1), 48–54. https://doi.org/10.1111/1467‐7687.00253.
      Odendaal, H. J., Brink, L. T., Nel, D. G., Carstens, E., De Jager, M., Potter, M., Du Plessis, C., & Groenewald, C. A. (2020). Smoking and drinking habits of women in subsequent pregnancies after specific advice about the dangers of these exposures during pregnancy. South African Medical Journal, 110(11), 1100. https://doi.org/10.7196/samj.2020.v110i11.14667.
      Oostenveld, R., Fries, P., Maris, E., & Schoffelen, J.‐M. (2010). FieldTrip: Open source software for advanced analysis of MEG, EEG, and invasive electrophysiological data. Computational Intelligence and Neuroscience, 2011, e156869. https://doi.org/10.1155/2011/156869.
      Oostenveld, R., & Praamstra, P. (2001). The five percent electrode system for high‐resolution EEG and ERP measurements. Clinical Neurophysiology: Official Journal of the International Federation of Clinical Neurophysiology, 112(4), 713–719. https://doi.org/10.1016/s1388‐2457(00)00527‐7.
      Orekhova, E. V., Elsabbagh, M., Jones, E. J., Dawson, G., Charman, T., & Johnson, M. H., & BASIS Team. (2014). EEG hyper‐connectivity in high‐risk infants is associated with later autism. Journal of Neurodevelopmental Disorders, 6(1), 40. https://doi.org/10.1186/1866‐1955‐6‐40.
      Otero, G. A. (1994). Eeg spectral analysis in children with sociocultural handicaps. International Journal of Neuroscience, 79(3‐4), 213–220. https://doi.org/10.3109/00207459408986082.
      Otero, G. A., Pliego‐Rivero, F. B., Fernández, T., & Ricardo, J. (2003). EEG development in children with sociocultural disadvantages: A follow‐up study. Clinical Neurophysiology, 114(10), 1918–1925. https://doi.org/10.1016/S1388‐2457(03)00173‐1.
      Pernet, C., Garrido, M. I., Gramfort, A., Maurits, N., Michel, C. M., Pang, E., Salmelin, R., Schoffelen, J. M., Valdes‐Sosa, P. A., & Puce, A. (2020). Issues and recommendations from the OHBM COBIDAS MEEG committee for reproducible EEG and MEG research. Nature Neuroscience, 23(12), 1473–1483. https://doi.org/10.1038/s41593‐020‐00709‐0.
      Robbins, K. A., Touryan, J., Mullen, T., Kothe, C., & Bigdely‐Shamlo, N. (2020). How sensitive are EEG results to preprocessing methods: A benchmarking study. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 28(5), 1081–1090. https://doi.org/10.1109/TNSRE.2020.2980223.
      Sato, J., Safar, K., Vandewouw, M. M., Bando, N., O'Connor, D. L., Unger, S. L., & Taylor, M. J. (2021). Altered functional connectivity during face processing in children born with very low birth weight. Social Cognitive and Affective Neuroscience, 16(11), 1182–1190. https://doi.org/10.1093/scan/nsab070.
      Schaworonkow, N., & Voytek, B. (2021). Longitudinal changes in aperiodic and periodic activity in electrophysiological recordings in the first seven months of life. Developmental Cognitive Neuroscience, 47, 100895. https://doi.org/10.1016/j.dcn.2020.100895.
      Schopler, E., Reichler, R. J., DeVellis, R. F., & Daly, K. (1980). Toward objective classification of childhood autism: Childhood Autism Rating Scale (CARS). Journal of Autism and Developmental Disorders, 10(1), 91–103. https://doi.org/10.1007/BF02408436.
      Shephard, E., Milosavljevic, B., Mason, L., Elsabbagh, M., Tye, C., Gliga, T., Jones, E. J. H., Charman, T., & Johnson, M. H. (2020). Neural and behavioural indices of face processing in siblings of children with autism spectrum disorder (ASD): A longitudinal study from infancy to mid‐childhood. Cortex, 127, 162–179. https://doi.org/10.1016/j.cortex.2020.02.008.
      Sherr, L., Macedo, A., Tomlinson, M., Skeen, S., & Cluver, L. D. (2017). Could cash and good parenting affect child cognitive development? A cross‐sectional study in South Africa and Malawi. BMC Pediatrics, 17(1), 123. https://doi.org/10.1186/s12887‐017‐0883‐z.
      Shuffrey, L. C., Pini, N., Potter, M., Springer, P., Lucchini, M., Rayport, Y., Sania, A., Firestein, M., Brink, L., Isler, J. R., Odendaal, H., & Fifer, W. P. (2022). Aperiodic electrophysiological activity in preterm infants is linked to subsequent autism risk. Developmental Psychobiology, 64(4), e22271. https://doi.org/10.1002/dev.22271.
      Stroganova, T. A., Orekhova, E. V., & Posikera, I. N. (1999). EEG alpha rhythm in infants. Clinical Neurophysiology, 110(6), 997–1012. https://doi.org/10.1016/S1388‐2457(98)00009‐1.
      Tierney, A. L., Gabard‐Durnam, L., Vogel‐Farley, V., Tager‐Flusberg, H., & Nelson, C. A. (2012). Developmental trajectories of resting EEG Power: An endophenotype of autism spectrum disorder. PLoS One, 7(6), e39127. https://doi.org/10.1371/journal.pone.0039127.
      Troller‐Renfree, S. V., Costanzo, M. A., Duncan, G. J., Magnuson, K., Gennetian, L. A., Yoshikawa, H., Halpern‐Meekin, S., Fox, N. A., & Noble, K. G. (2022). The impact of a poverty reduction intervention on infant brain activity. Proceedings of the National Academy of Sciences, 119(5), e2115649119. https://doi.org/10.1073/pnas.2115649119.
      Tröndle, M., Popov, T., Pedroni, A., Pfeiffer, C., Barańczuk‐Turska, Z., & Langer, N. (2023). Decomposing age effects in EEG alpha power. Cortex; A Journal Devoted to the Study of the Nervous System and Behavior, 161, 116–144. https://doi.org/10.1016/j.cortex.2023.02.002.
      Uhlhaas, P. J., Roux, F., Singer, W., Haenschel, C., Sireteanu, R., & Rodriguez, E. (2009). The development of neural synchrony reflects late maturation and restructuring of functional networks in humans. Proceedings of the National Academy of Sciences of the United States of America, 106(24), 9866–9871. https://doi.org/10.1073/pnas.0900390106.
      van der Velde, B., White, T., & Kemner, C. (2021). The emergence of a theta social brain network during infancy. Neuroimage, 240, 118298. https://doi.org/10.1016/j.neuroimage.2021.118298.
      Warne, R. T. (2023). National mean IQ estimates: Validity, data quality, and recommendations. Evolutionary Psychological Science, 9(2), 197–223. https://doi.org/10.1007/s40806‐022‐00351‐y.
      Wass, S., & Jones, E. J. H. (2023). Editorial perspective: Leaving the baby in the bathwater in neurodevelopmental research. Journal of Child Psychology and Psychiatry, 64(8), 1256–1259. https://doi.org/10.1111/jcpp.13750.
      Webb, S. J., Shic, F., Murias, M., Sugar, C. A., Naples, A. J., Barney, E., Borland, H., Hellemann, G., Johnson, S., Kim, M., Levin, A. R., Sabatos‐DeVito, M., Santhosh, M., Senturk, D., Dziura, J., Bernier, R. A., Chawarska, K., Dawson, G., Faja, S., … McPartland, J. (2020). Biomarker acquisition and quality control for multi‐site studies: The autism biomarkers consortium for clinical trials. Frontiers in Integrative Neuroscience, 13, 71. https://doi.org/10.3389/fnint.2019.00071.
      Wechsler, D. (2003). The Wechsler Intelligence Scale for Children. Pearson.
    • Grant Information:
      777394 EU/EFPIA/SFARI/Autistica/AUTISM SPEAKS Innovative Medicines Initiative 2 Joint Undertaking (AIMS-2-TRIALS); 115300 Innovative Medicines Initiative 1 Joint Undertaking (AIMS-2-TRIALS); MR/K021389/1 the Medical Research Council for the projects "The Development of Social Attention and Perception Abilities in Typical and At-risk Infants"; MR/T003057/1 "Human neurocognitive development: Early-stage processing, modifiers, and outcomes"; 213608/Z/18/Z Sir Henry Wellcome Postdoctoral Fellowship; MR/S036423/1 UK Research and Innovation
    • Contributed Indexing:
      Keywords: EEG; development; eye‐tracking; global health; longitudinal
    • Publication Date:
      Date Created: 20240326 Date Completed: 20240327 Latest Revision: 20240327
    • Publication Date:
      20240327
    • Accession Number:
      10.1002/dev.22484
    • Accession Number:
      38528816