Concentration units used to report blood- and breath-alcohol concentration for legal purposes differ between countries which is important to consider when blood/breath ratios of alcohol are compared and contrasted.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Author(s): Jones AW;Jones AW
  • Source:
    Journal of forensic sciences [J Forensic Sci] 2024 Jul; Vol. 69 (4), pp. 1473-1480. Date of Electronic Publication: 2024 Mar 22.
  • Publication Type:
    Journal Article
  • Language:
    English
  • Additional Information
    • Source:
      Publisher: Blackwell Pub Country of Publication: United States NLM ID: 0375370 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1556-4029 (Electronic) Linking ISSN: 00221198 NLM ISO Abbreviation: J Forensic Sci Subsets: MEDLINE
    • Publication Information:
      Publication: 2006- : Malden, MA : Blackwell Pub.
      Original Publication: [Chicago, Ill.] : Callaghan and Co., 1956-
    • Subject Terms:
    • Abstract:
      This technical note reviews the plethora of concentration units used to report blood-alcohol concentration (BAC) and breath-alcohol concentrations (BrAC) for legal purposes in different countries. The choice of units sometimes causes confusion when scientific papers originating from a certain country might be introduced into evidence via expert testimony, such as when alcohol-related crimes are prosecuted. The concentration units are also important to consider when blood/breath ratios (BBRs) of alcohol are calculated and compared between countries. Statutory BAC limits for driving in most nations are reported in mass/volume (m/v) units, such as g/100 mL (g%) in the United States, mg/100 mL (mg%) in the United Kingdom and Republic of Ireland, or g/L (mg/mL) in many EU nations. By contrast, Germany and the Nordic countries report BAC as mass/mass (m/m) units, hence g/kg or mg/g, which are ~5.5% lower than m/v units, because whole blood has an average density of 1.055 g/mL. There are historical reasons for reporting BAC in mass/mass units because the aliquots of blood analyzed were measured by weight rather than volume. The difference between m/m and m/v is also important in postmortem toxicology, such as when distribution ratios of ethanol between blood and other biological specimens, such as urine, vitreous humor, and cerebrospinal fluid, are reported.
      (© 2024 American Academy of Forensic Sciences.)
    • References:
      Jones AW, Morland JG, Liu RH. Driving under the influence of psychoactive substances – a historical review. Forensic Sci Rev. 2019;31:103–140.
      Lerner BH. One for the road. Baltimore, MD: The John's Hopkins University Press; 2011.
      Jones AW. How nordic countries enforce impaired driving legislation. Forensic Sci Rev. 2022;34:131–143.
      Jones AW. Measuring alcohol in blood and breath for forensic purposes – a historical review. Forensic Sci Rev. 1996;8:13–44.
      Widmark EMP. Eine mikromethode zur bestimmung von äthylalkohol im blut. [A micromethod for the determination of ethyl alcohol in blood]. Biochem Z. 1922;131:473–484.
      Dubowski KM. Some practical laboratory aspects of forensic alcohol determinations. Proc Iowa Acad Sci. 1956;63:364–390.
      Bonnichsen RK, Theorell H. An enzymatic method for the microdetermination of ethanol. Scand J Clin Lab Invest. 1951;3:58–62. https://doi.org/10.3109/00365515109060572.
      Cadman WJ, Johns T. Application of the gas chromatograph to the laboratory of criminalistics. J Forensic Sci. 1960;5:369–385.
      Curry AS, Walker GW, Simpson GS. Determination of ethanol in blood by gas chromatography. Analyst. 1966;91:742–743. https://doi.org/10.1039/an9669100742.
      Machata G. The advantages of automated blood alcohol determination by headspace analysis. Z Rechtsmed. 1975;75:229–234. https://doi.org/10.1007/BF00201176.
      Jones AW, Schuberth J. Computer‐aided headspace gas chromatography applied to blood‐alcohol analysis: importance of online process control. J Forensic Sci. 1989;34:1116–1127. https://doi.org/10.1520/JFS12748J.
      Tiscione NB, Alford I, Yeatman DT, Shan X. Ethanol analysis by headspace gas chromatography with simultaneous flame‐ionization and mass spectrometry detection. J Anal Toxicol. 2011;35:501–511. https://doi.org/10.1093/anatox/35.7.501.
      Xiao HT, He L, Tong RS, Yu JY, Chen L, Zou J, et al. Rapid and sensitive headspace gas chromatography‐mass spectrometry method for the analysis of ethanol in the whole blood. J Clin Lab Anal. 2014;28:386–390. https://doi.org/10.1002/jcla.21698.
      Fell JC, Scherer M. Estimation of the potential effectiveness of lowering the blood alcohol concentration (BAC) limit for driving from 0.08 to 0.05 grams per deciliter in the United States. Alcohol Clin Exp Res. 2017;41:2128–2139. https://doi.org/10.1111/acer.13501.
      Scherer M, Fell JC. Effectiveness of lowering the blood alcohol concentration (BAC) limit for driving from 0.10 to 0.08 grams per deciliter in the United States. Traffic Inj Prev. 2019;20:1–8. https://doi.org/10.1080/15389588.2018.1508836.
      Wagenaar AC, O'Malley PM, LaFond C. Lowered legal blood alcohol limits for young drivers: effects on drinking, driving, and driving‐after‐drinking behaviors in 30 states. Am J Public Health. 2001;91:801–804. https://doi.org/10.2105/ajph.91.5.801.
      Thomas FD, Bomberg R, Darrah J, Graham L, Southcott T, Dennert R, et al. Evaluation of Utah's .05 BAC per se law. (Report No DOT HS 813 233). Washington, DC: National Highway Traffic Safety Administration; 2022.
      Giunta CJ. The mole and amount of substance in chemistry and education: beyond official definitions. J Chem Educ. 2015;92:1593–1597. https://doi.org/10.1021/ed5007376.
      Blomberg RD, Peck RC, Moskowitz H, Burns M, Fiorentino D. The Long Beach/Fort Lauderdale relative risk study. J Safety Res. 2009;40:285–292. https://doi.org/10.1016/j.jsr.2009.07.002.
      Borkenstein RF, Smith HW. The Breathalyzer and its applications. Med Sci Law. 1961;1:13–23. https://doi.org/10.1177/002580246200200103.
      Begg TB, Hill ID, Nickolls LC. Breathalyzer and Kitagawa‐Wright methods of measuring breath alcohol. Br Med J. 1964;1(5374):9–15. https://doi.org/10.1136/bmj.1.5374.9.
      Jones AW. The variability of the blood/breath ratio and its impact on the results of breath‐alcohol analyses – a rejoinder. J Chem Educ. 2024;101:715–717. https://doi.org/10.1021/acs.jchemed.3c01206.
      Jones AW, Andersson L. Variability of the blood/breath alcohol ratio in drinking drivers. J Forensic Sci. 1996;41:916–921. https://doi.org/10.1520/JFS14025J.
      Lenter C, editor. Geigy scientific tables. Basel, Switzerland: Ciba‐Geigy; 1981.
      Jones AW, Tilson C. Distribution ratios of ethanol and water between whole blood, plasma, serum, and erythrocytes: recommendations for interpreting clinical laboratory results in a legal context. J Forensic Sci. 2023;68:9–21. https://doi.org/10.1111/1556‐4029.15164.
      Jones AW. Alcohol: breath analysis. In: Payne‐James J, Byard RW, editors. Encyclopedia of forensic and legal medicine. 2nd ed. Oxford, UK: Elsevier; 2016. p. 119–137.
      Jones AW. Use of punishable limits of blood‐ and breath‐alcohol concentration in traffic law enforcement: some advantages and limitations. In: Jones AW, Morland JG, Liu RH, editors. Alcohol, drugs, and driving: forensic science and law enforcement issues. Boca Raton, FL: CRC Press; 2020. p. 155–202.
      Larsen G Jr. New breath test method. Traffic Dig Rev. 1954;2:2–4.
      Mason MF, Dubowski KM. Breath‐alcohol analysis: uses, methods, and some forensic problems – review and opinion. J Forensic Sci. 1976;21:9–41. https://doi.org/10.1520/JFS10336J.
      Jones AW, Cowan JM. Reflections on variability in the blood‐breath ratio of ethanol and its importance when evidential breath‐alcohol instruments are used in law enforcement. Forensic Sci Res. 2020;5:300–308. https://doi.org/10.1080/20961790.2020.1780720.
      Cowan JM, Burris JM, Hughes JR, Cunningham MP. The relationship of normal body temperature, end‐expired breath temperature, and BAC/BrAC ratio in 98 physically fit human test subjects. J Anal Toxicol. 2010;34:238–242. https://doi.org/10.1093/jat/34.5.238.
      Jones AW, Andersson L. Comparison of ethanol concentrations in venous blood and end‐expired breath during a controlled drinking study. Forensic Sci Int. 2003;132:18–25. https://doi.org/10.1016/s0379‐0738(02)00417‐6.
      Norberg A, Sandhagen B, Bratteby LE, Gabrielsson J, Jones AW, Fan H, et al. Do ethanol and deuterium oxide distribute into the same water space in healthy volunteers? Alcohol Clin Exp Res. 2001;25:1423–1430. https://doi.org/10.1097/00000374‐200110000‐00004.
      Charlebois RC, Corbett MR, Wigmore JG. Comparison of ethanol concentrations in blood, serum, and blood cells for forensic application. J Anal Toxicol. 1996;20:171–178. https://doi.org/10.1093/jat/20.3.171.
      Forney RB, Hughes FW, Harger RN, Richards AB. Alcohol distribution in the vascular system. Concentration of orally administered alcohol in blood from various points in the vascular system, and in rebreathed air, during absorption. Q J Stud Alcohol. 1964;25:205–217. https://doi.org/10.15288/qjsa.1964.25.205.
      Jones AW, Norberg A, Hahn RG. Concentration‐time profiles of ethanol in arterial and venous blood and end‐expired breath during and after intravenous infusion. J Forensic Sci. 1997;42:1088–1094. https://doi.org/10.1520/JFS14265J.
      Martin E, Moll W, Schmid P, Dettli L. The pharmacokinetics of alcohol in human breath, venous and arterial blood after oral ingestion. Eur J Clin Pharmacol. 1984;26:619–626. https://doi.org/10.1007/BF00543496.
      Jones AW, Lindberg L, Olsson SG. Magnitude and time‐course of arterio‐venous differences in blood‐alcohol concentration in healthy men. Clin Pharmacokinet. 2004;43:1157–1166. https://doi.org/10.2165/00003088‐200443150‐00006.
      Lindberg L, Brauer S, Wollmer P, Goldberg L, Jones AW, Olsson SG. Breath alcohol concentration determined with a new analyzer using free exhalation predicts almost precisely the arterial blood alcohol concentration. Forensic Sci Int. 2007;168:200–207. https://doi.org/10.1016/j.forsciint.2006.07.018.
      Lindberg L, Jones AW. The advantages of standardizing exhaled breath‐alcohol concentration to a reference respiratory gas‐water vapor. J Breath Res. 2022;17:014002. https://doi.org/10.1088/1752‐7163/aca21b.
      Aderjan R, Daldrup T, Käferstein H, Krause D, Mußhoff F, Paul LD, et al. Richtlinien zur bestimmung der blutalkoholkonzentration (BAK) für forensische zwecke – BAK richtlinien [Guidelines for determining the blood alcohol concentration (BAC) in blood for forensic purposes – BAC guidelines]. Blutalkohol. 2011;48:137–143.
      Iffland R, West A, Bilzer N, Schuff A. Zur zuverlassigkeit der blutalkoholbestimmung. Das verteilungsverhattnis des wassers zwischen serum und vollblut [The reliability of the blood alcohol determination. The relationship of the water content between serum and whole blood]. Rechtsmedizin. 1999;9:123–130. https://doi.org/10.1007/s001940050094.
      Wigmore JG, Pelletier MR. Comments on the paper entitled concentration dependency of the BAC/BrAC (blood alcohol concentration/breath alcohol concentration) conversion factor during the linear elimination phase by H‐T Haffner et al. Int J Leg Med. 2005;119:54–55. https://doi.org/10.1007/s00414‐004‐0477‐9.
      Wigmore JG. Kritische anmerkungen zum artikel von Kohler, Banaschak und Brinkmann, Blutalkohol 34: 36–44, 1997 [Critical comments on the article by von Kohler, Banaschak und Brinkmann, Blutalkohol 34: 36–44, 1997]. Blutalkohol. 1997;34:343–345.
      Heise HA. Chemical tests for intoxication. Rocky Mt Med J. 1958;55:46–51.
      Turner RF, Heise HA, Muehlberger CW. Interpretation of tests for intoxication. JAMA. 1958;168:1359–1362. https://doi.org/10.1001/jama.1958.63000100007012.
      Heise HA, Halporn B. Medicolegal aspects of drunkennes. Pa Med J. 1932;36:190–195.
      Heise HA. Alcohol and automobile accidents. JAMA. 1934;103:739–741.
      Bogen E. Drunkenness – a quantataive study of acute alcohol intoxication. Am J Med Sci. 1928;176:153–167.
      Jetter WW. Studies in alcohol. I. Diagnosis of acute alcoholic intoxication by a correlation of clinical and chemical findings. Am J Med Sci. 1938;196:475–487.
      Brick J, Erickson CK. Intoxication is not always visible: an unrecognized prevention challenge. Alcohol Clin Exp Res. 2009;33:1489–1507. https://doi.org/10.1111/j.1530‐0277.2009.00979.x.
      Muehlberger CW. Chemical tests for intoxication. Report of the committee on tests for intoxication. Chicago, IL: National Safety Council; 1938. p. 1–39.
      Jones AW. Dubowski's stages of alcohol influence and clinical signs and symptoms of drunkenness in relation to a person's blood‐alcohol concentration – historical background. J Anal Toxicol. 2024;48:131–140. https://doi.org/10.1093/jat/bkae008.
      Jones AW. Forensic isssues related to ethanol determination in biological specimens as evidence for prosecution of traffic offenders when statutory concentration limits are enforced. In: Karch SB, Goldberger BA, editors. Karch's drug abuse handbook. 3rd ed. Boca Raton, FL: CRC Press; 2023. p. 303–348.
      Fournier LR. The Daubert guidelines: usefulness, utilization, and suggestions for improving quality control. J Appl Res Mem Cogn. 2016;5:308–313. https://doi.org/10.1016/j.jarmac.2016.06.012.
      Grivas CR, Komar DA. Kumho, Daubert, and the nature of scientific inquiry: implications for forensic anthropology. J Forensic Sci. 2008;53:771–776. https://doi.org/10.1111/j.1556‐4029.2008.00771.x.
      Krause D. Richtlinien zur Bestimmung der Blutalkoholkonzentration im blut (BAK) für forensische zwecke – BAK‐richtlinie [Guidelines for determining the blood alcohol concentration (BAC) in blood for forensic purposes – BAC guidelines]. Blutalkohol. 2007;44:273–282.
      Kriikku P, Ojanpera I. Significant decrease in the rate of fatal alcohol poisonings in Finland validated by blood alcohol concentration statistics. Drug Alcohol Depend. 2020;206:107722. https://doi.org/10.1016/j.drugalcdep.2019.107722.
      Tormey WP, Moore TM. Ethanol as a single toxin in non‐traumatic deaths – a toxicology perspective. Leg Med (Tokyo). 2013;15:122–125. https://doi.org/10.1016/j.legalmed.2012.10.001.
      Jones AW, Holmgren P. Comparison of blood‐ethanol concentration in deaths attributed to acute alcohol poisoning and chronic alcoholism. J Forensic Sci. 2003;48:874–879. https://doi.org/10.1520/JFS2002420.
      Darke S, Duflou J, Peacock A, Chrzanowska A, Yuen WS, Farrell M, et al. Characteristics, toxicology and major organ pathology of deaths due to acute alcohol toxicity in Australia, 2011–2022. Drug Alcohol Rev. 2024;43. (in press). https://doi.org/10.1111/dar.13817. Epub 2024 Feb 12.
      Haffner HT, Graw M, Dettling A, Schmitt G, Schuff A. Concentration dependency of the BAC/BrAC (blood alcohol concentration/breath alcohol concentration) conversion factor during the linear elimination phase. Int J Leg Med. 2003;117:276–281. https://doi.org/10.1007/s00414‐003‐0384‐5.
      Jachau K, Schmidt U, Wittig H, Romhild W, Krause D. Zur frage der transformation von atem‐ in blutalkoholkonzentrationen experimentelle untersuchungen mit einem geeichten atemalkoholtestgerät alcotest 7110 evidential mk Ithethe question about conversion of breath alcohol concentration and blood alcohol concentration. [Experimental investigations employing the calibrated alcotest 7110 evidential mk III breath analyser]. Rechtsmedizin. 2000;20:96–101. https://doi.org/10.1007/s001940000042.
    • Contributed Indexing:
      Keywords: alcohol; analysis; blood; breath; concentration units; drunken driving; ethanol; jurisprudence
    • Accession Number:
      0 (Blood Alcohol Content)
      3K9958V90M (Ethanol)
      0 (Central Nervous System Depressants)
    • Publication Date:
      Date Created: 20240323 Date Completed: 20240626 Latest Revision: 20240626
    • Publication Date:
      20240627
    • Accession Number:
      10.1111/1556-4029.15511
    • Accession Number:
      38520069