Extrinsic and intrinsic drivers of natural killer cell clonality.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Author(s): Rückert T;Rückert T; Romagnani C; Romagnani C
  • Source:
    Immunological reviews [Immunol Rev] 2024 May; Vol. 323 (1), pp. 80-106. Date of Electronic Publication: 2024 Mar 20.
  • Publication Type:
    Journal Article; Review
  • Language:
    English
  • Additional Information
    • Source:
      Publisher: Blackwell Country of Publication: England NLM ID: 7702118 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1600-065X (Electronic) Linking ISSN: 01052896 NLM ISO Abbreviation: Immunol Rev Subsets: MEDLINE
    • Publication Information:
      Publication: <2002-> : Oxford : Blackwell
      Original Publication: Copenhagen, Munksgaard.
    • Subject Terms:
    • Abstract:
      Clonal expansion of antigen-specific lymphocytes is the fundamental mechanism enabling potent adaptive immune responses and the generation of immune memory. Accompanied by pronounced epigenetic remodeling, the massive proliferation of individual cells generates a critical mass of effectors for the control of acute infections, as well as a pool of memory cells protecting against future pathogen encounters. Classically associated with the adaptive immune system, recent work has demonstrated that innate immune memory to human cytomegalovirus (CMV) infection is stably maintained as large clonal expansions of natural killer (NK) cells, raising questions on the mechanisms for clonal selection and expansion in the absence of re-arranged antigen receptors. Here, we discuss clonal NK cell memory in the context of the mechanisms underlying clonal competition of adaptive lymphocytes and propose alternative selection mechanisms that might decide on the clonal success of their innate counterparts. We propose that the integration of external cues with cell-intrinsic sources of heterogeneity, such as variegated receptor expression, transcriptional states, and somatic variants, compose a bottleneck for clonal selection, contributing to the large size of memory NK cell clones.
      (© 2024 The Authors. Immunological Reviews published by John Wiley & Sons Ltd.)
    • References:
      van Heijst JWJ, Gerlach C, Swart E, et al. Recruitment of antigen‐specific CD8+ T cells in response to infection is markedly efficient. Science. 2009;325(5945):1265‐1269. doi:10.1126/science.1175455.
      Prlic M, Hernandez‐Hoyos G, Bevan MJ. Duration of the initial TCR stimulus controls the magnitude but not functionality of the CD8+ T cell response. J Exp Med. 2006;203(9):2135‐2143. doi:10.1084/jem.20060928.
      Badovinac VP, Porter BB, Harty JT. Programmed contraction of CD8(+) T cells after infection. Nat Immunol. 2002;3(7):619‐626. doi:10.1038/ni804.
      Klenerman P, Oxenius A. T cell responses to cytomegalovirus. Nat Rev Immunol. 2016;16(6):367‐377. doi:10.1038/nri.2016.38.
      Brodin P, Jojic V, Gao T, et al. Variation in the human immune system is largely driven by non‐heritable influences. Cell. 2015;160(1–2):37‐47. doi:10.1016/j.cell.2014.12.020.
      Gumá M, Angulo A, Vilches C, Gómez‐Lozano N, Malats N, López‐Botet M. Imprint of human cytomegalovirus infection on the NK cell receptor repertoire. Blood. 2004;104(12):3664‐3671. doi:10.1182/blood-2004-05-2058.
      Sun JC, Beilke JN, Lanier LL. Adaptive immune features of natural killer cells. Nature. 2009;457(7229):557‐561. doi:10.1038/nature07665.
      Grassmann S, Pachmayr LO, Leube J, et al. Distinct surface expression of activating receptor Ly49H drives differential expansion of NK cell clones upon murine cytomegalovirus infection. Immunity. 2019;50(6):1391‐1400.e4. doi:10.1016/j.immuni.2019.04.015.
      Rückert T, Lareau CA, Mashreghi MF, Ludwig LS, Romagnani C. Clonal expansion and epigenetic inheritance of long‐lasting NK cell memory. Nat Immunol. 2022;23(11):1551‐1563. doi:10.1038/s41590-022-01327-7.
      Goebel WF, Avery OT. Chemo‐immunological studies on conjugated carbohydrate‐proteins. J Exp Med. 1929;50(4):521‐531.
      Klopstock A, Selter GE. Über Chemospezifische Antigene. Z Immun Forschg. 1928;55:118.
      Landsteiner K, Lampl H. Über die Abhängigkeit der serologischen Spezifizität von der chemischen Struktur (Darstellung von Antigenen mit bekannter chemischer Konstitution der spezifisch Gruppen). Biochem Z. 1918;86:343.
      Landsteiner K, van der Scheer J. On the specificity of serological reactions with simple chemical compounds (inhibition reactions). J Exp Med. 1931;54(3):295‐305.
      Jerne NK. The natural‐selection theory of antibody formation. Proc Natl Acad Sci USA. 1955;41(11):849‐857. doi:10.1073/pnas.41.11.849.
      Talmage DW. Allergy and immunology. Annu Rev Med. 1957;8:239‐256. doi:10.1146/annurev.me.08.020157.001323.
      Burnet FM, Burnet FM. The Clonal Selection Theory of Acquired Immunity. Vol 3. Vanderbilt University Press; 1959:1‐232. doi:10.5962/bhl.title.8281.
      Davis MM, Bjorkman PJ. T‐cell antigen receptor genes and T‐cell recognition. Nature. 1988;334(6181):395‐402. doi:10.1038/334395a0.
      Tonegawa S. Somatic generation of antibody diversity. Nature. 1983;302(5909):575‐581. doi:10.1038/302575a0.
      McBlane JF, van Gent DC, Ramsden DA, et al. Cleavage at a V(D)J recombination signal requires only RAG1 and RAG2 proteins and occurs in two steps. Cell. 1995;83(3):387‐395. doi:10.1016/0092-8674(95)90116-7.
      Oettinger MA, Schatz DG, Gorka C, Baltimore D. RAG‐1 and RAG‐2, adjacent genes that synergistically activate V(D)J recombination. Science. 1990;248(4962):1517‐1523. doi:10.1126/science.2360047.
      Gilfillan S, Dierich A, Lemeur M, Benoist C, Mathis D. Mice lacking TdT: mature animals with an immature lymphocyte repertoire. Science. 1993;261(5125):1175‐1178. doi:10.1126/science.8356452.
      Komori T, Okada A, Stewart V, Alt FW. Lack of N regions in antigen receptor variable region genes of TdT‐deficient lymphocytes. Science. 1993;261(5125):1171‐1175. doi:10.1126/science.8356451.
      Jenkins MK, Chu HH, McLachlan JB, Moon JJ. On the composition of the preimmune repertoire of T cells specific for peptide‐major histocompatibility complex ligands. Annu Rev Immunol. 2010;28:275‐294. doi:10.1146/annurev-immunol-030409-101253.
      Hammer Q, Rückert T, Romagnani C. Natural killer cell specificity for viral infections. Nat Immunol. 2018;19(8):800‐808. doi:10.1038/s41590-018-0163-6.
      Orange JS, Biron CA. An absolute and restricted requirement for IL‐12 in natural killer cell IFN‐gamma production and antiviral defense. Studies of natural killer and T cell responses in contrasting viral infections. J Immunol. 1996;156(3):1138‐1142.
      Biron CA, Nguyen KB, Pien GC, Cousens LP, Salazar‐Mather TP. Natural killer cells in antiviral defense: function and regulation by innate cytokines. Annu Rev Immunol. 1999;17(1):189‐220. doi:10.1146/annurev.immunol.17.1.189.
      Cassatella MA, Anegón I, Cuturi MC, Griskey P, Trinchieri G, Perussia B. Fc gamma R(CD16) interaction with ligand induces Ca2+ mobilization and phosphoinositide turnover in human natural killer cells. Role of Ca2+ in fc gamma R(CD16)‐induced transcription and expression of lymphokine genes. J Exp Med. 1989;169(2):549‐567. doi:10.1084/jem.169.2.549.
      Lanier LL, Ruitenberg JJ, Phillips JH. Functional and biochemical analysis of CD16 antigen on natural killer cells and granulocytes. J Immunol. 1988;141(10):3478‐3485.
      Diefenbach A, Raulet DH. Strategies for target cell recognition by natural killer cells. Immunol Rev. 2001;181(1):170‐184. doi:10.1034/j.1600-065X.2001.1810114.x.
      Diefenbach A, Jamieson AM, Liu SD, Shastri N, Raulet DH. Ligands for the murine NKG2D receptor: expression by tumor cells and activation of NK cells and macrophages. Nat Immunol. 2000;1(2):119‐126. doi:10.1038/77793.
      Jamieson AM, Diefenbach A, McMahon CW, Xiong N, Carlyle JR, Raulet DH. The role of the NKG2D Immunoreceptor in immune cell activation and natural killing. Immunity. 2002;17(1):19‐29. doi:10.1016/S1074-7613(02)00333-3.
      Kärre K, Ljunggren HG, Piontek G, Kiessling R. Selective rejection of H‐2‐deficient lymphoma variants suggests alternative immune defence strategy. Nature. 1986;319(6055):675‐678. doi:10.1038/319675a0.
      Ljunggren HG, Kärre K. In search of the “missing self”: MHC molecules and NK cell recognition. Immunol Today. 1990;11(7):237‐244. doi:10.1016/0167-5699(90)90097-s.
      Cella M, Longo A, Ferrara GB, Strominger JL, Colonna M. NK3‐specific natural killer cells are selectively inhibited by Bw4‐positive HLA alleles with isoleucine 80. J Exp Med. 1994;180(4):1235‐1242. doi:10.1084/jem.180.4.1235.
      Ciccone E, Pende D, Viale O, et al. Involvement of HLA class I alleles in natural killer (NK) cell‐specific functions: expression of HLA‐Cw3 confers selective protection from lysis by alloreactive NK clones displaying a defined specificity (specificity 2). J Exp Med. 1992;176(4):963‐971. doi:10.1084/jem.176.4.963.
      Colonna M, Borsellino G, Falco M, Ferrara GB, Strominger JL. HLA‐C is the inhibitory ligand that determines dominant resistance to lysis by NK1‐ and NK2‐specific natural killer cells. Proc Natl Acad Sci USA. 1993;90(24):12000‐12004. doi:10.1073/pnas.90.24.12000.
      Mandelboim O, Reyburn HT, Valés‐Gómez M, et al. Protection from lysis by natural killer cells of group 1 and 2 specificity is mediated by residue 80 in human histocompatibility leukocyte antigen C alleles and also occurs with empty major histocompatibility complex molecules. J Exp Med. 1996;184(3):913‐922. doi:10.1084/jem.184.3.913.
      Moretta A, Bottino C, Pende D, et al. Identification of four subsets of human CD3‐CD16+ natural killer (NK) cells by the expression of clonally distributed functional surface molecules: correlation between subset assignment of NK clones and ability to mediate specific alloantigen recognition. J Exp Med. 1990;172(6):1589‐1598. doi:10.1084/jem.172.6.1589.
      Karlhofer FM, Ribaudo RK, Yokoyama WM. MHC class I alloantigen specificity of Ly‐49+ IL‐2‐activated natural killer cells. Nature. 1992;358(6381):66‐70. doi:10.1038/358066a0.
      Brennan J, Mahon G, Mager DL, Jefferies WA, Takei F. Recognition of class I major histocompatibility complex molecules by Ly‐49: specificities and domain interactions. J Exp Med. 1996;183(4):1553‐1559. doi:10.1084/jem.183.4.1553.
      Hanke T, Takizawa H, McMahon CW, et al. Direct assessment of MHC class I binding by seven Ly49 inhibitory NK cell receptors. Immunity. 1999;11(1):67‐77. doi:10.1016/s1074-7613(00)80082-5.
      Brown MG, Dokun AO, Heusel JW, et al. Vital involvement of a natural killer cell activation receptor in resistance to viral infection. Science. 2001;292(5518):934‐937. doi:10.1126/science.1060042.
      Chalmer JE, Mackenzie JS, Stanley NF. Resistance to murine cytomegalovirus linked to the major histocompatibility complex of the mouse. J Gen Virol. 1977;37(1):107‐114. doi:10.1099/0022-1317-37-1-107.
      Lee SH, Girard S, Macina D, et al. Susceptibility to mouse cytomegalovirus is associated with deletion of an activating natural killer cell receptor of the C‐type lectin superfamily. Nat Genet. 2001;28(1):42‐45. doi:10.1038/ng0501-42.
      Scalzo AA, Fitzgerald NA, Simmons A, La Vista AB, Shellam GR. Cmv‐1, a genetic locus that controls murine cytomegalovirus replication in the spleen. J Exp Med. 1990;171(5):1469‐1483. doi:10.1084/jem.171.5.1469.
      Scalzo AA, Lyons PA, Fitzgerald NA, Forbes CA, Yokoyama WM, Shellam GR. Genetic mapping of Cmv1 in the region of mouse chromosome 6 encoding the NK gene complex‐associated loci Ly49 and musNKR‐P1. Genomics. 1995;27(3):435‐441. doi:10.1006/geno.1995.1074.
      Smith HRC, Heusel JW, Mehta IK, et al. Recognition of a virus‐encoded ligand by a natural killer cell activation receptor. Proc Natl Acad Sci. 2002;99(13):8826‐8831. doi:10.1073/pnas.092258599.
      Arase H, Mocarski ES, Campbell AE, Hill AB, Lanier LL. Direct recognition of cytomegalovirus by activating and inhibitory NK cell receptors. Science. 2002;296(5571):1323‐1326. doi:10.1126/science.1070884.
      Bubić I, Wagner M, Krmpotić A, et al. Gain of virulence caused by loss of a gene in murine cytomegalovirus. J Virol. 2004;78(14):7536‐7544. doi:10.1128/JVI.78.14.7536-7544.2004.
      Daniels KA, Devora G, Lai WC, O'Donnell CL, Bennett M, Welsh RM. Murine cytomegalovirus is regulated by a discrete subset of natural killer cells reactive with monoclonal antibody to Ly49H. J Exp Med. 2001;194(1):29‐44. doi:10.1084/jem.194.1.29.
      Dokun AO, Kim S, Smith HR, Kang HS, Chu DT, Yokoyama WM. Specific and nonspecific NK cell activation during virus infection. Nat Immunol. 2001;2(10):951‐956. doi:10.1038/ni714.
      Min‐Oo G, Lanier LL. Cytomegalovirus generates long‐lived antigen‐specific NK cells with diminished bystander activation to heterologous infection. J Exp Med. 2014;211(13):2669‐2680. doi:10.1084/jem.20141172.
      Nabekura T, Lanier LL. Tracking the fate of antigen‐specific versus cytokine‐activated natural killer cells after cytomegalovirus infection. J Exp Med. 2016;213(12):2745‐2758. doi:10.1084/jem.20160726.
      Nabekura T, Lanier LL. Activating receptors for self‐MHC class I enhance effector functions and memory differentiation of NK cells during mouse cytomegalovirus infection. Immunity. 2016;45(1):74‐82. doi:10.1016/j.immuni.2016.06.024.
      Foley B, Cooley S, Verneris MR, et al. Cytomegalovirus reactivation after allogeneic transplantation promotes a lasting increase in educated NKG2C+ natural killer cells with potent function. Blood. 2012;119(11):2665‐2674. doi:10.1182/blood-2011-10-386995.
      Lopez‐Vergès S, Milush JM, Schwartz BS, et al. Expansion of a unique CD57+NKG2Chi natural killer cell subset during acute human cytomegalovirus infection. Proc Natl Acad Sci USA. 2011;108(36):14725‐14732. doi:10.1073/pnas.1110900108.
      Ataya M, Redondo‐Pachón D, Llinàs‐Mallol L, et al. Long‐term evolution of the adaptive NKG2C+ NK cell response to cytomegalovirus infection in kidney transplantation: an insight on the diversity of host–pathogen interaction. J Immunol. 2021;207(7):1882‐1890. doi:10.4049/jimmunol.2100055.
      Braud VM, Allan DSJ, O'Callaghan CA, et al. HLA‐E binds to natural killer cell receptors CD94/NKG2A, B and C. Nature. 1998;391(6669):795‐799. doi:10.1038/35869.
      Brooks AG, Borrego F, Posch PE, et al. Specific recognition of HLA‐E, but not classical, HLA class I molecules by soluble CD94/NKG2A and NK cells. J Immunol. 1999;162(1):305‐313.
      Lee N, Llano M, Carretero M, et al. HLA‐E is a major ligand for the natural killer inhibitory receptor CD94/NKG2A. Proc Natl Acad Sci USA. 1998;95(9):5199‐5204. doi:10.1073/pnas.95.9.5199.
      Berger C, Xuereb S, Johnson DC, et al. Expression of herpes simplex virus ICP47 and human cytomegalovirus US11 prevents recognition of transgene products by CD8+ cytotoxic T lymphocytes. J Virol. 2000;74(10):4465‐4473.
      Wiertz EJHJ, Jones TR, Sun L, Bogyo M, Geuze HJ, Ploegh HL. The human cytomegalovirus US11 gene product dislocates MHC class I heavy chains from the endoplasmic reticulum to the cytosol. Cell. 1996;84(5):769‐779. doi:10.1016/S0092-8674(00)81054-5.
      Wiertz EJHJ, Tortorella D, Bogyo M, et al. Sec6l‐mediated transfer of a membrane protein from the endoplasmic reticulum to the proteasome for destruction. Nature. 1996;384(6608):432‐438. doi:10.1038/384432a0.
      Hammer Q, Rückert T, Borst EM, et al. Peptide‐specific recognition of human cytomegalovirus strains controls adaptive natural killer cells. Nat Immunol. 2018;19(5):453‐463. doi:10.1038/s41590-018-0082-6.
      Schlums H, Cichocki F, Tesi B, et al. Cytomegalovirus infection drives adaptive epigenetic diversification of NK cells with altered signaling and effector function. Immunity. 2015;42(3):443‐456. doi:10.1016/j.immuni.2015.02.008.
      Luetke‐Eversloh M, Hammer Q, Durek P, et al. Human cytomegalovirus drives epigenetic imprinting of the IFNG locus in NKG2Chi natural killer cells. PLoS Pathog. 2014;10(10):e1004441. doi:10.1371/journal.ppat.1004441.
      Wiedemann GM, Santosa EK, Grassmann S, et al. Deconvoluting global cytokine signaling networks in natural killer cells. Nat Immunol. 2021;22(5):627‐638. doi:10.1038/s41590-021-00909-1.
      Holmes TD, Pandey RV, Helm EY, et al. The transcription factor Bcl11b promotes both canonical and adaptive NK cell differentiation. Sci Immunol. 2021;6(57):eabc9801. doi:10.1126/sciimmunol.abc9801.
      Lau CM, Adams NM, Geary CD, et al. Epigenetic control of innate and adaptive immune memory. Nat Immunol. 2018;19(9):963‐972. doi:10.1038/s41590-018-0176-1.
      Santosa EK, Lau CM, Sahin M, Leslie CS, Sun JC. 3D chromatin dynamics during innate and adaptive immune memory acquisition. bioRxiv. 2023;2023.01.16.524322. doi:10.1101/2023.01.16.524322.
      Santosa EK, Kim H, Rückert T, et al. Control of nutrient uptake by IRF4 orchestrates innate immune memory. Nat Immunol. 2023;24(10):1685‐1697. doi:10.1038/s41590-023-01620-z.
      Larsen SB, Cowley CJ, Sajjath SM, et al. Establishment, maintenance, and recall of inflammatory memory. Cell Stem Cell. 2021;28(10):1758‐1774.e8. doi:10.1016/j.stem.2021.07.001.
      Béziat V, Liu LL, Malmberg JA, et al. NK cell responses to cytomegalovirus infection lead to stable imprints in the human KIR repertoire and involve activating KIRs. Blood. 2013;121(14):2678‐2688. doi:10.1182/blood-2012-10-459545.
      Béziat V, Dalgard O, Asselah T, et al. CMV drives clonal expansion of NKG2C+ NK cells expressing self‐specific KIRs in chronic hepatitis patients. Eur J Immunol. 2012;42(2):447‐457. doi:10.1002/eji.201141826.
      Wu C, Li B, Lu R, et al. Clonal tracking of rhesus macaque hematopoiesis highlights a distinct lineage origin for natural killer cells. Cell Stem Cell. 2014;14(4):486‐499. doi:10.1016/j.stem.2014.01.020.
      Wu C, Espinoza DA, Koelle SJ, et al. Clonal expansion and compartmentalized maintenance of rhesus macaque NK cell subsets. Sci Immunol. 2018;3(29):eaat9781. doi:10.1126/sciimmunol.aat9781.
      Truitt LL, Yang D, Espinoza DA, et al. Impact of CMV infection on natural killer cell clonal repertoire in CMV‐Naïve rhesus macaques. Front Immunol. 2019;10:2381. doi:10.3389/fimmu.2019.02381.
      Hansen SG, Wu HL, Burwitz BJ, et al. Broadly targeted CD8+ T cell responses restricted by major histocompatibility complex‐E. Science. 2016;351(6274):714‐720. doi:10.1126/science.aac9475.
      Richards R, Scholz I, Powers C, Skach WR, Früh K. The cytoplasmic domain of rhesus cytomegalovirus Rh178 interrupts translation of major histocompatibility class I leader peptide‐containing proteins prior to translocation. J Virol. 2011;85(17):8766‐8776. doi:10.1128/JVI.05021-11.
      Cordes S, Mortlock RD, Truitt L, et al. Single cell RNA‐Seq characterization of an adaptive population of NK cells after primary CMV infection in rhesus macaques. Blood. 2021;138:193. doi:10.1182/blood-2021-153667.
      Hasan MZ, Höltermann C, Petersen B, et al. Detailed phenotypic and functional characterization of CMV‐associated adaptive NK cells in rhesus macaques. Front Immunol. 2022;13:1028788. doi:10.3389/fimmu.2022.1028788.
      Stewart JB, Chinnery PF. The dynamics of mitochondrial DNA heteroplasmy: implications for human health and disease. Nat Rev Genet. 2015;16(9):530‐542. doi:10.1038/nrg3966.
      Ludwig LS, Lareau CA, Ulirsch JC, et al. Lineage tracing in humans enabled by mitochondrial mutations and single‐cell genomics. Cell. 2019;176(6):1325‐1339.e22. doi:10.1016/j.cell.2019.01.022.
      Lareau CA, Ludwig LS, Muus C, et al. Massively parallel single‐cell mitochondrial DNA genotyping and chromatin profiling. Nat Biotechnol. 2021;39(4):451‐461. doi:10.1038/s41587-020-0645-6.
      Weekes MP, Wills MR, Mynard K, Carmichael AJ, Sissons JG. The memory cytotoxic T‐lymphocyte (CTL) response to human cytomegalovirus infection contains individual peptide‐specific CTL clones that have undergone extensive expansion in vivo. J Virol. 1999;73(3):2099‐2108. doi:10.1128/JVI.73.3.2099-2108.1999.
      Weekes MP, Carmichael AJ, Wills MR, Mynard K, Sissons JG. Human CD28‐CD8+ T cells contain greatly expanded functional virus‐specific memory CTL clones. J Immunol. 1999;162(12):7569‐7577.
      Gillespie GM, Wills MR, Appay V, et al. Functional heterogeneity and high frequencies of cytomegalovirus‐specific CD8(+) T lymphocytes in healthy seropositive donors. J Virol. 2000;74(17):8140‐8150. doi:10.1128/jvi.74.17.8140-8150.2000.
      Malherbe L, Hausl C, Teyton L, McHeyzer‐Williams MG. Clonal selection of helper T cells is determined by an affinity threshold with no further skewing of TCR binding properties. Immunity. 2004;21(5):669‐679. doi:10.1016/j.immuni.2004.09.008.
      Zehn D, Lee SY, Bevan MJ. Complete but curtailed T‐cell response to very low‐affinity antigen. Nature. 2009;458(7235):211‐214. doi:10.1038/nature07657.
      Moon JJ, Chu HH, Pepper M, et al. Naive CD4(+) T cell frequency varies for different epitopes and predicts repertoire diversity and response magnitude. Immunity. 2007;27(2):203‐213. doi:10.1016/j.immuni.2007.07.007.
      Obar JJ, Khanna KM, Lefrançois L. Endogenous naive CD8+ T cell precursor frequency regulates primary and memory responses to infection. Immunity. 2008;28(6):859‐869. doi:10.1016/j.immuni.2008.04.010.
      Muntasell A, López‐Montañés M, Vera A, et al. NKG2C zygosity influences CD94/NKG2C receptor function and the NK‐cell compartment redistribution in response to human cytomegalovirus. Eur J Immunol. 2013;43(12):3268‐3278. doi:10.1002/eji.201343773.
      Savage PA, Boniface JJ, Davis MM. A kinetic basis for T cell receptor repertoire selection during an immune response. Immunity. 1999;10(4):485‐492. doi:10.1016/s1074-7613(00)80048-5.
      Williams MA, Bevan MJ. Effector and memory CTL differentiation. Annu Rev Immunol. 2007;25:171‐192. doi:10.1146/annurev.immunol.25.022106.141548.
      Voigt V, Forbes CA, Tonkin JN, et al. Murine cytomegalovirus m157 mutation and variation leads to immune evasion of natural killer cells. Proc Natl Acad Sci USA. 2003;100(23):13483‐13488. doi:10.1073/pnas.2233572100.
      Heatley SL, Pietra G, Lin J, et al. Polymorphism in human cytomegalovirus UL40 impacts on recognition of human leukocyte antigen‐E (HLA‐E) by natural killer cells. J Biol Chem. 2013;288(12):8679‐8690. doi:10.1074/jbc.M112.409672.
      Béziat V, Hervier B, Achour A, Boutolleau D, Marfain‐Koka A, Vieillard V. Human NKG2A overrides NKG2C effector functions to prevent autoreactivity of NK cells. Blood. 2011;117(16):4394‐4396. doi:10.1182/blood-2010-11-319194.
      Adams NM, Geary CD, Santosa EK, et al. Cytomegalovirus infection drives avidity selection of natural killer cells. Immunity. 2019;50(6):1381‐1390.e5. doi:10.1016/j.immuni.2019.04.009.
      Liu LL, Landskron J, Ask EH, et al. Critical role of CD2 Co‐stimulation in adaptive natural killer cell responses revealed in NKG2C‐deficient humans. Cell Rep. 2016;15(5):1088‐1099. doi:10.1016/j.celrep.2016.04.005.
      Della Chiesa M, Falco M, Bertaina A, et al. Human cytomegalovirus infection promotes rapid maturation of NK cells expressing activating killer Ig‐like receptor in patients transplanted with NKG2C−/− umbilical cord blood. J Immunol. 2014;192(4):1471‐1479. doi:10.4049/jimmunol.1302053.
      Nabekura T, Kanaya M, Shibuya A, Fu G, Gascoigne NRJ, Lanier LL. The costimulatory molecule DNAM‐1 is essential for optimal differentiation of memory natural killer cells during mouse cytomegalovirus infection. Immunity. 2014;40(2):225‐234. doi:10.1016/j.immuni.2013.12.011.
      Magri G, Muntasell A, Romo N, et al. NKp46 and DNAM‐1 NK‐cell receptors drive the response to human cytomegalovirus‐infected myeloid dendritic cells overcoming viral immune evasion strategies. Blood. 2011;117(3):848‐856. doi:10.1182/blood-2010-08-301374.
      Anfossi N, André P, Guia S, et al. Human NK cell education by inhibitory receptors for MHC class I. Immunity. 2006;25(2):331‐342. doi:10.1016/j.immuni.2006.06.013.
      Enqvist M, Ask EH, Forslund E, et al. Coordinated expression of DNAM‐1 and LFA‐1 in educated NK cells. J Immunol. 2015;194(9):4518‐4527. doi:10.4049/jimmunol.1401972.
      Wagner AK, Kadri N, Snäll J, et al. Expression of CD226 is associated to but not required for NK cell education. Nat Commun. 2017;8(1):15627. doi:10.1038/ncomms15627.
      Jutz S, Leitner J, Schmetterer K, et al. Assessment of costimulation and coinhibition in a triple parameter T cell reporter line: simultaneous measurement of NF‐κB, NFAT and AP‐1. J Immunol Methods. 2016;430:10‐20. doi:10.1016/j.jim.2016.01.007.
      Sunder‐Plassmann R, Reinherz EL. A p56lck‐independent pathway of CD2 signaling involves Jun kinase. J Biol Chem. 1998;273(37):24249‐24257. doi:10.1074/jbc.273.37.24249.
      Martelli MP, Lin H, Zhang W, Samelson LE, Bierer BE. Signaling via LAT (linker for T‐cell activation) and Syk/ZAP70 is required for ERK activation and NFAT transcriptional activation following CD2 stimulation. Blood. 2000;96(6):2181‐2190.
      Leitner J, Herndler‐Brandstetter D, Zlabinger GJ, Grubeck‐Loebenstein B, Steinberger P. CD58/CD2 is the primary costimulatory pathway in human CD28−CD8+ T cells. J Immunol. 2015;195(2):477‐487. doi:10.4049/jimmunol.1401917.
      Marchingo JM, Prevedello G, Kan A, Heinzel S, Hodgkin PD, Duffy KR. T‐cell stimuli independently sum to regulate an inherited clonal division fate. Nat Commun. 2016;7(1):13540. doi:10.1038/ncomms13540.
      Sun JC, Madera S, Bezman NA, Beilke JN, Kaplan MH, Lanier LL. Proinflammatory cytokine signaling required for the generation of natural killer cell memory. J Exp Med. 2012;209(5):947‐954. doi:10.1084/jem.20111760.
      Madera S, Sun JC. Stage‐specific requirement of IL‐18 for antiviral NK cell expansion. J Immunol. 2015;194(4):1408‐1412. doi:10.4049/jimmunol.1402001.
      Nabekura T, Girard JP, Lanier LL. IL‐33 receptor ST2 amplifies the expansion of NK cells and enhances host defense during mouse cytomegalovirus infection. J Immunol. 2015;194(12):5948‐5952. doi:10.4049/jimmunol.1500424.
      Madera S, Rapp M, Firth MA, Beilke JN, Lanier LL, Sun JC. Type I IFN promotes NK cell expansion during viral infection by protecting NK cells against fratricide. J Exp Med. 2016;213(2):225‐233. doi:10.1084/jem.20150712.
      Li X, Leung S, Qureshi S, Darnell JE, Stark GR. Formation of STAT1‐STAT2 heterodimers and their role in the activation of IRF‐1 gene transcription by interferon‐alpha. J Biol Chem. 1996;271(10):5790‐5794. doi:10.1074/jbc.271.10.5790.
      Geary CD, Krishna C, Lau CM, et al. Non‐redundant ISGF3 components promote NK cell survival in an auto‐regulatory manner during viral infection. Cell Rep. 2018;24(8):1949‐1957.e6. doi:10.1016/j.celrep.2018.07.060.
      Cooper MA, Fehniger TA, Turner SC, et al. Human natural killer cells: a unique innate immunoregulatory role for the CD56bright subset. Blood. 2001;97(10):3146‐3151. doi:10.1182/blood.V97.10.3146.
      Juelke K, Killig M, Luetke‐Eversloh M, et al. CD62L expression identifies a unique subset of polyfunctional CD56dim NK cells. Blood. 2010;116(8):1299‐1307. doi:10.1182/blood-2009-11-253286.
      Romagnani C, Juelke K, Falco M, et al. CD56brightCD16‐ killer Ig‐like receptor‐ NK cells display longer telomeres and acquire features of CD56dim NK cells upon activation. J Immunol. 2007;178(8):4947‐4955. doi:10.4049/jimmunol.178.8.4947.
      Lopez‐Vergès S, Milush JM, Pandey S, et al. CD57 defines a functionally distinct population of mature NK cells in the human CD56dimCD16+ NK‐cell subset. Blood. 2010;116(19):3865‐3874. doi:10.1182/blood-2010-04-282301.
      Björkström NK, Riese P, Heuts F, et al. Expression patterns of NKG2A, KIR, and CD57 define a process of CD56dim NK‐cell differentiation uncoupled from NK‐cell education. Blood. 2010;116(19):3853‐3864. doi:10.1182/blood-2010-04-281675.
      Fauriat C, Long EO, Ljunggren HG, Bryceson YT. Regulation of human NK‐cell cytokine and chemokine production by target cell recognition. Blood. 2010;115(11):2167‐2176. doi:10.1182/blood-2009-08-238469.
      Lanier LL, Le AM, Civin CI, Loken MR, Phillips JH. The relationship of CD16 (Leu‐11) and Leu‐19 (NKH‐1) antigen expression on human peripheral blood NK cells and cytotoxic T lymphocytes. J Immunol. 1986;136(12):4480‐4486.
      Luetke‐Eversloh M, Cicek BB, Siracusa F, et al. NK cells gain higher IFN‐γ competence during terminal differentiation. Eur J Immunol. 2014;44(7):2074‐2084. doi:10.1002/eji.201344072.
      Nagler A, Lanier LL, Cwirla S, Phillips JH. Comparative studies of human FcRIII‐positive and negative natural killer cells. J Immunol. 1989;143(10):3183‐3191.
      Ni J, Hölsken O, Miller M, et al. Adoptively transferred natural killer cells maintain long‐term antitumor activity by epigenetic imprinting and CD4+ T cell help. Onco Targets Ther. 2016;5(9):e1219009. doi:10.1080/2162402X.2016.1219009.
      Romee R, Schneider SE, Leong JW, et al. Cytokine activation induces human memory‐like NK cells. Blood. 2012;120(24):4751‐4760. doi:10.1182/blood-2012-04-419283.
      Ugolini S, Arpin C, Anfossi N, et al. Involvement of inhibitory NKRs in the survival of a subset of memory‐phenotype CD8+ T cells. Nat Immunol. 2001;2(5):430‐435. doi:10.1038/87740.
      Marti F, Xu CW, Selvakumar A, Brent R, Dupont B, King PD. LCK‐phosphorylated human killer cell‐inhibitory receptors recruit and activate phosphatidylinositol 3‐kinase. Proc Natl Acad Sci USA. 1998;95(20):11810‐11815. doi:10.1073/pnas.95.20.11810.
      Béziat V, Sleiman M, Goodridge JP, et al. Polyclonal expansion of NKG2C+ NK cells in TAP‐deficient patients. Front Immunol. 2015;6:507. doi:10.3389/fimmu.2015.00507.
      de la Salle H, Hanau D, Fricker D, et al. Homozygous human TAP peptide transporter mutation in HLA class I deficiency. Science. 1994;265(5169):237‐241. doi:10.1126/science.7517574.
      Zimmer J, Donato L, Hanau D, et al. Activity and phenotype of natural killer cells in peptide transporter (TAP)‐deficient patients (type I bare lymphocyte syndrome). J Exp Med. 1998;187(1):117‐122. doi:10.1084/jem.187.1.117.
      Orr MT, Murphy WJ, Lanier LL. “Unlicensed” natural killer cells dominate the response to cytomegalovirus infection. Nat Immunol. 2010;11(4):321‐327. doi:10.1038/ni.1849.
      Merkt W, Salzer U, Thiel J, et al. Blood CD3‐(CD56 or 16)+ natural killer cell distributions are heterogeneous in healthy adults and suppressed by azathioprine in patients with ANCA‐associated vasculitides. BMC Immunol. 2021;22(1):26. doi:10.1186/s12865-021-00416-w.
      Marchingo JM, Kan A, Sutherland RM, et al. Antigen affinity, costimulation, and cytokine inputs sum linearly to amplify T cell expansion. Science. 2014;346(6213):1123‐1127. doi:10.1126/science.1260044.
      Heinzel S, Binh Giang T, Kan A, et al. A Myc‐dependent division timer complements a cell‐death timer to regulate T cell and B cell responses. Nat Immunol. 2017;18(1):96‐103. doi:10.1038/ni.3598.
      Chen L, Glover JN, Hogan PG, Rao A, Harrison SC. Structure of the DNA‐binding domains from NFAT, FOS and JUN bound specifically to DNA. Nature. 1998;392(6671):42‐48. doi:10.1038/32100.
      Betz BC, Jordan‐Williams KL, Wang C, et al. Batf coordinates multiple aspects of B and T cell function required for normal antibody responses. J Exp Med. 2010;207(5):933‐942. doi:10.1084/jem.20091548.
      Schraml BU, Hildner K, Ise W, et al. The AP‐1 transcription factor Batf controls T(H)17 differentiation. Nature. 2009;460(7253):405‐409. doi:10.1038/nature08114.
      Glasmacher E, Agrawal S, Chang AB, et al. A genomic regulatory element that directs assembly and function of immune‐specific AP‐1–IRF complexes. Science. 2012;338(6109):975‐980. doi:10.1126/science.1228309.
      Tussiwand R, Lee WL, Murphy TL, et al. Compensatory dendritic cell development mediated by BATF–IRF interactions. Nature. 2012;490(7421):502‐507. doi:10.1038/nature11531.
      Iwata A, Durai V, Tussiwand R, et al. Quality of TCR signaling determined by differential affinities of enhancers for the composite BATF‐IRF4 transcription factor complex. Nat Immunol. 2017;18(5):563‐572. doi:10.1038/ni.3714.
      Man K, Miasari M, Shi W, et al. The transcription factor IRF4 is essential for TCR affinity‐mediated metabolic programming and clonal expansion of T cells. Nat Immunol. 2013;14(11):1155‐1165. doi:10.1038/ni.2710.
      Nayar R, Schutten E, Bautista B, et al. Graded levels of IRF4 regulate CD8+ T cell differentiation and expansion, but not attrition, in response to acute virus infection. J Immunol. 2014;192(12):5881‐5893. doi:10.4049/jimmunol.1303187.
      Yao S, Buzo BF, Pham D, et al. Interferon regulatory factor 4 sustains CD8(+) T cell expansion and effector differentiation. Immunity. 2013;39(5):833‐845. doi:10.1016/j.immuni.2013.10.007.
      Li P, Spolski R, Liao W, et al. BATF–JUN is critical for IRF4‐mediated transcription in T cells. Nature. 2012;490(7421):543‐546. doi:10.1038/nature11530.
      Ciofani M, Madar A, Galan C, et al. A validated regulatory network for Th17 cell specification. Cell. 2012;151(2):289‐303. doi:10.1016/j.cell.2012.09.016.
      Kurachi M, Barnitz RA, Yosef N, et al. The transcription factor BATF operates as an essential differentiation checkpoint in early effector CD8+ T cells. Nat Immunol. 2014;15(4):373‐383. doi:10.1038/ni.2834.
      Chang JT, Wherry EJ, Goldrath AW. Molecular regulation of effector and memory T cell differentiation. Nat Immunol. 2014;15(12):1104‐1115. doi:10.1038/ni.3031.
      Gett AV, Sallusto F, Lanzavecchia A, Geginat J. T cell fitness determined by signal strength. Nat Immunol. 2003;4(4):355‐360. doi:10.1038/ni908.
      Zehn D, Roepke S, Weakly K, Bevan MJ, Prlic M. Inflammation and TCR signal strength determine the breadth of the T cell response in a Bim‐dependent manner. J Immunol. 2014;192(1):200‐205. doi:10.4049/jimmunol.1302289.
      Joshi NS, Cui W, Chandele A, et al. Inflammation directs memory precursor and short‐lived effector CD8(+) T cell fates via the graded expression of T‐bet transcription factor. Immunity. 2007;27(2):281‐295. doi:10.1016/j.immuni.2007.07.010.
      Cui W, Joshi NS, Jiang A, Kaech SM. Effects of signal 3 during CD8 T cell priming: bystander production of IL‐12 enhances effector T cell expansion but promotes terminal differentiation. Vaccine. 2009;27(15):2177‐2187. doi:10.1016/j.vaccine.2009.01.088.
      Badovinac VP, Porter BB, Harty JT. CD8+ T cell contraction is controlled by early inflammation. Nat Immunol. 2004;5(8):809‐817. doi:10.1038/ni1098.
      Badovinac VP, Messingham KAN, Jabbari A, Haring JS, Harty JT. Accelerated CD8+ T‐cell memory and prime‐boost response after dendritic‐cell vaccination. Nat Med. 2005;11(7):748‐756. doi:10.1038/nm1257.
      Starbeck‐Miller GR, Xue HH, Harty JT. IL‐12 and type I interferon prolong the division of activated CD8 T cells by maintaining high‐affinity IL‐2 signaling in vivo. J Exp Med. 2014;211(1):105‐120. doi:10.1084/jem.20130901.
      Pearce EL, Shen H. Generation of CD8 T cell memory is regulated by IL‐12. J Immunol. 2007;179(4):2074‐2081. doi:10.4049/jimmunol.179.4.2074.
      Riggan L, Ma F, Li JH, et al. The transcription factor Fli1 restricts the formation of memory precursor NK cells during viral infection. Nat Immunol. 2022;23(4):556‐567. doi:10.1038/s41590-022-01150-0.
      Buchholz VR, Flossdorf M, Hensel I, et al. Disparate individual fates compose robust CD8+ T cell immunity. Science. 2013;340(6132):630‐635. doi:10.1126/science.1235454.
      Gerlach C, Rohr JC, Perié L, et al. Heterogeneous differentiation patterns of individual CD8+ T cells. Science. 2013;340(6132):635‐639. doi:10.1126/science.1235487.
      Gerlach C, van Heijst JWJ, Swart E, et al. One naive T cell, multiple fates in CD8+ T cell differentiation. J Exp Med. 2010;207(6):1235‐1246. doi:10.1084/jem.20091175.
      Stemberger C, Huster KM, Koffler M, et al. A single naive CD8+ T cell precursor can develop into diverse effector and memory subsets. Immunity. 2007;27(6):985‐997. doi:10.1016/j.immuni.2007.10.012.
      Herndler‐Brandstetter D, Ishigame H, Shinnakasu R, et al. KLRG1+ effector CD8+ T cells lose KLRG1, differentiate into all memory T cell lineages, and convey enhanced protective immunity. Immunity. 2018;48(4):716‐729.e8. doi:10.1016/j.immuni.2018.03.015.
      Bresser K, Kok L, Swain AC, et al. Replicative history marks transcriptional and functional disparity in the CD8+ T cell memory pool. Nat Immunol. 2022;23(5):791‐801. doi:10.1038/s41590-022-01171-9.
      Kinjyo I, Qin J, Tan SY, et al. Real‐time tracking of cell cycle progression during CD8+ effector and memory T‐cell differentiation. Nat Commun. 2015;6:6301. doi:10.1038/ncomms7301.
      Plambeck M, Kazeroonian A, Loeffler D, et al. Heritable changes in division speed accompany the diversification of single T cell fate. Proc Natl Acad Sci USA. 2022;119(9):e2116260119. doi:10.1073/pnas.2116260119.
      Dowling MR, Kan A, Heinzel S, et al. Stretched cell cycle model for proliferating lymphocytes. Proc Natl Acad Sci USA. 2014;111(17):6377‐6382. doi:10.1073/pnas.1322420111.
      Chiossone L, Chaix J, Fuseri N, Roth C, Vivier E, Walzer T. Maturation of mouse NK cells is a 4‐stage developmental program. Blood. 2009;113(22):5488‐5496. doi:10.1182/blood-2008-10-187179.
      Hayakawa Y, Smyth MJ. CD27 dissects mature NK cells into two subsets with distinct responsiveness and migratory capacity. J Immunol. 2006;176(3):1517‐1524. doi:10.4049/jimmunol.176.3.1517.
      Wethington D, Potempa M, Giuliani G, et al. Clonal stochasticity in early NK cell response to mouse cytomegalovirus is generated by mature subsets of varying proliferative ability. Published online September 8, 2023:2023.09.07.556760. doi:10.1101/2023.09.07.556760.
      Flommersfeld S, Böttcher JP, Ersching J, et al. Fate mapping of single NK cells identifies a type 1 innate lymphoid‐like lineage that bridges innate and adaptive recognition of viral infection. Immunity. 2021;54(10):2288‐2304.e7. doi:10.1016/j.immuni.2021.08.002.
      Sallusto F, Lenig D, Förster R, Lipp M, Lanzavecchia A. Two subsets of memory T lymphocytes with distinct homing potentials and effector functions. Nature. 1999;401(6754):708‐712. doi:10.1038/44385.
      Geginat J, Lanzavecchia A, Sallusto F. Proliferation and differentiation potential of human CD8+ memory T‐cell subsets in response to antigen or homeostatic cytokines. Blood. 2003;101(11):4260‐4266. doi:10.1182/blood-2002-11-3577.
      Graef P, Buchholz VR, Stemberger C, et al. Serial transfer of single‐cell‐derived Immunocompetence reveals Stemness of CD8+ central memory T cells. Immunity. 2014;41(1):116‐126. doi:10.1016/j.immuni.2014.05.018.
      Grassmann S, Mihatsch L, Mir J, et al. Early emergence of T central memory precursors programs clonal dominance during chronic viral infection. Nat Immunol. 2020;21(12):1563‐1573. doi:10.1038/s41590-020-00807-y.
      Johnnidis JB, Muroyama Y, Ngiow SF, et al. Inhibitory signaling sustains a distinct early memory CD8+ T cell precursor that is resistant to DNA damage. Sci Immunol. 2021;6(55):eabe3702. doi:10.1126/sciimmunol.abe3702.
      Pais Ferreira D, Silva JG, Wyss T, et al. Central memory CD8+ T cells derive from stem‐like Tcf7hi effector cells in the absence of cytotoxic differentiation. Immunity. 2020;53(5):985‐1000.e11. doi:10.1016/j.immuni.2020.09.005.
      Schober K, Voit F, Grassmann S, et al. Reverse TCR repertoire evolution toward dominant low‐affinity clones during chronic CMV infection. Nat Immunol. 2020;21(4):434‐441. doi:10.1038/s41590-020-0628-2.
      Appay V, Dunbar PR, Callan M, et al. Memory CD8+ T cells vary in differentiation phenotype in different persistent virus infections. Nat Med. 2002;8(4):379‐385. doi:10.1038/nm0402-379.
      Holtappels R, Pahl‐Seibert MF, Thomas D, Reddehase MJ. Enrichment of immediate‐early 1 (m123/pp89) peptide‐specific CD8 T cells in a pulmonary CD62L(lo) memory‐effector cell pool during latent murine cytomegalovirus infection of the lungs. J Virol. 2000;74(24):11495‐11503. doi:10.1128/jvi.74.24.11495-11503.2000.
      Karrer U, Sierro S, Wagner M, et al. Memory inflation: continuous accumulation of antiviral CD8+ T cells over time. J Immunol. 2003;170(4):2022‐2029. doi:10.4049/jimmunol.170.4.2022.
      Loewendorf AI, Arens R, Purton JF, Surh CD, Benedict CA. Dissecting the requirements for maintenance of the CMV‐specific memory T‐cell pool. Viral Immunol. 2011;24(4):351‐355. doi:10.1089/vim.2010.0140.
      Snyder CM, Cho KS, Morrison EL, van Dommelen S, Shellam GR, Hill AB. Memory inflation during chronic viral infection is maintained by continuous production of Short‐lived functional T cells. Immunity. 2008;29(4):650‐659. doi:10.1016/j.immuni.2008.07.017.
      Seckert CK, Schader SI, Ebert S, et al. Antigen‐presenting cells of haematopoietic origin prime cytomegalovirus‐specific CD8 T‐cells but are not sufficient for driving memory inflation during viral latency. J Gen Virol. 2011;92(Pt 9):1994‐2005. doi:10.1099/vir.0.031815-0.
      Smith CJ, Turula H, Snyder CM. Systemic hematogenous maintenance of memory inflation by MCMV infection. PLoS Pathog. 2014;10(7):e1004233. doi:10.1371/journal.ppat.1004233.
      Torti N, Walton SM, Brocker T, Rülicke T, Oxenius A. Non‐hematopoietic cells in lymph nodes drive memory CD8 T cell inflation during murine cytomegalovirus infection. PLoS Pathog. 2011;7(10):e1002313. doi:10.1371/journal.ppat.1002313.
      Zaghi E, Calvi M, Puccio S, et al. Single‐cell profiling identifies impaired adaptive NK cells expanded after HCMV reactivation in haploidentical HSCT. JCI. Insight. 2021;6(12):e146973. doi:10.1172/jci.insight.146973.
      Alexandrov LB, Nik‐Zainal S, Wedge DC, et al. Signatures of mutational processes in human cancer. Nature. 2013;500(7463):415‐421. doi:10.1038/nature12477.
      Alexandrov LB, Kim J, Haradhvala NJ, et al. The repertoire of mutational signatures in human cancer. Nature. 2020;578(7793):94‐101. doi:10.1038/s41586-020-1943-3.
      Alexandrov LB, Nik‐Zainal S, Wedge DC, Campbell PJ, Stratton MR. Deciphering signatures of mutational processes operative in human cancer. Cell Rep. 2013;3(1):246‐259. doi:10.1016/j.celrep.2012.12.008.
      Osorio FG, Rosendahl Huber A, Oka R, et al. Somatic mutations reveal lineage relationships and age‐related mutagenesis in human hematopoiesis. Cell Rep. 2018;25(9):2308‐2316.e4. doi:10.1016/j.celrep.2018.11.014.
      Lee‐Six H, Øbro NF, Shepherd MS, et al. Population dynamics of normal human blood inferred from somatic mutations. Nature. 2018;561(7724):473‐478. doi:10.1038/s41586-018-0497-0.
      Spencer Chapman M, Ranzoni AM, Myers B, et al. Lineage tracing of human development through somatic mutations. Nature. 2021;595(7865):85‐90. doi:10.1038/s41586-021-03548-6.
      Welch JS, Ley TJ, Link DC, Miller CA, et al. The origin and evolution of mutations in acute myeloid leukemia. Cell. 2012;150(2):264‐278. doi:10.1016/j.cell.2012.06.023.
      Machado HE, Mitchell E, Øbro NF, et al. Diverse mutational landscapes in human lymphocytes. Nature. 2022;608(7924):724‐732. doi:10.1038/s41586-022-05072-7.
      Mitchell E, Spencer Chapman M, Williams N, et al. Clonal dynamics of haematopoiesis across the human lifespan. Nature. 2022;606(7913):343‐350. doi:10.1038/s41586-022-04786-y.
      Duncan BK, Miller JH. Mutagenic deamination of cytosine residues in DNA. Nature. 1980;287(5782):560‐561. doi:10.1038/287560a0.
      Borghesi L, Hsu LY, Miller JP, et al. B lineage‐specific regulation of V(D)J recombinase activity is established in common lymphoid progenitors. J Exp Med. 2004;199(4):491‐502. doi:10.1084/jem.20031800.
      Welner RS, Esplin BL, Garrett KP, et al. Asynchronous RAG‐1 expression during B lymphopoiesis. J Immunol. 2009;183(12):7768‐7777. doi:10.4049/jimmunol.0902333.
      Karo JM, Schatz DG, Sun JC. The RAG recombinase dictates functional heterogeneity and cellular fitness in natural killer cells. Cell. 2014;159(1):94‐107. doi:10.1016/j.cell.2014.08.026.
      Shin SB, Lo BC, Ghaedi M, et al. Abortive γδTCR rearrangements suggest ILC2s are derived from T‐cell precursors. Blood Adv. 2020;4(21):5362‐5372. doi:10.1182/bloodadvances.2020002758.
      Qian L, Bajana S, Georgescu C, et al. Suppression of ILC2 differentiation from committed T cell precursors by E protein transcription factors. J Exp Med. 2019;216(4):884‐899. doi:10.1084/jem.20182100.
      Veinotte LL, Greenwood CP, Mohammadi N, Parachoniak CA, Takei F. Expression of rearranged TCRgamma genes in natural killer cells suggests a minor thymus‐dependent pathway of lineage commitment. Blood. 2006;107(7):2673‐2679. doi:10.1182/blood-2005-07-2797.
      Fronková E, Krejcí O, Kalina T, Horváth O, Trka J, Hrusák O. Lymphoid differentiation pathways can be traced by TCR delta rearrangements. J Immunol. 2005;175(4):2495‐2500. doi:10.4049/jimmunol.175.4.2495.
      Suo C, Polanski K, Dann E, et al. Dandelion uses the single‐cell adaptive immune receptor repertoire to explore lymphocyte developmental origins. Nat Biotechnol. 2023;13:40‐51. doi:10.1038/s41587-023-01734-7.
      Mazzurana L, Czarnewski P, Jonsson V, et al. Tissue‐specific transcriptional imprinting and heterogeneity in human innate lymphoid cells revealed by full‐length single‐cell RNA‐sequencing. Cell Res. 2021;31(5):554‐568. doi:10.1038/s41422-020-00445-x.
      Gonzalez‐Perez A, Sabarinathan R, Lopez‐Bigas N. Local determinants of the mutational landscape of the human genome. Cell. 2019;177(1):101‐114. doi:10.1016/j.cell.2019.02.051.
      Polak P, Karlić R, Koren A, et al. Cell‐of‐origin chromatin organization shapes the mutational landscape of cancer. Nature. 2015;518(7539):360‐364. doi:10.1038/nature14221.
      Schuster‐Böckler B, Lehner B. Chromatin organization is a major influence on regional mutation rates in human cancer cells. Nature. 2012;488(7412):504‐507. doi:10.1038/nature11273.
      Makova KD, Hardison RC. The effects of chromatin organization on variation in mutation rates in the genome. Nat Rev Genet. 2015;16(4):213‐223. doi:10.1038/nrg3890.
      Chen X, Chen Z, Chen H, et al. Nucleosomes suppress spontaneous mutations base‐specifically in eukaryotes. Science. 2012;335(6073):1235‐1238. doi:10.1126/science.1217580.
      Cairns J. Mutation selection and the natural history of cancer. Nature. 1975;255(5505):197‐200. doi:10.1038/255197a0.
      Nowell PC. The clonal evolution of tumor cell populations. Science. 1976;194(4260):23‐28. doi:10.1126/science.959840.
      Kakiuchi N, Ogawa S. Clonal expansion in non‐cancer tissues. Nat Rev Cancer. 2021;21(4):239‐256. doi:10.1038/s41568-021-00335-3.
      Fialkow PJ, Singer JW, Raskind WH, et al. Clonal development, stem‐cell differentiation, and clinical remissions in acute nonlymphocytic leukemia. N Engl J Med. 1987;317(8):468‐473. doi:10.1056/NEJM198708203170802.
      Fearon ER, Burke PJ, Schiffer CA, Zehnbauer BA, Vogelstein B. Differentiation of leukemia cells to polymorphonuclear leukocytes in patients with acute nonlymphocytic leukemia. N Engl J Med. 1986;315(1):15‐24. doi:10.1056/NEJM198607033150103.
      Busque L, Mio R, Mattioli J, et al. Nonrandom X‐inactivation patterns in normal females: lyonization ratios vary with age. Blood. 1996;88(1):59‐65.
      Gale RE, Fielding AK, Harrison CN, Linch DC. Acquired skewing of X‐chromosome inactivation patterns in myeloid cells of the elderly suggests stochastic clonal loss with age. Br J Haematol. 1997;98(3):512‐519. doi:10.1046/j.1365-2141.1997.2573078.x.
      Genovese G, Kähler AK, Handsaker RE, et al. Clonal hematopoiesis and blood‐cancer risk inferred from blood DNA sequence. N Engl J Med. 2014;371(26):2477‐2487. doi:10.1056/NEJMoa1409405.
      Jaiswal S, Fontanillas P, Flannick J, et al. Age‐related clonal hematopoiesis associated with adverse outcomes. N Engl J Med. 2014;371(26):2488‐2498. doi:10.1056/NEJMoa1408617.
      Xie M, Lu C, Wang J, et al. Age‐related mutations associated with clonal hematopoietic expansion and malignancies. Nat Med. 2014;20(12):1472‐1478. doi:10.1038/nm.3733.
      Zink F, Stacey SN, Norddahl GL, et al. Clonal hematopoiesis, with and without candidate driver mutations, is common in the elderly. Blood. 2017;130(6):742‐752. doi:10.1182/blood-2017-02-769869.
      Desai P, Mencia‐Trinchant N, Savenkov O, et al. Somatic mutations precede acute myeloid leukemia years before diagnosis. Nat Med. 2018;24(7):1015‐1023. doi:10.1038/s41591-018-0081-z.
      Niroula A, Sekar A, Murakami MA, et al. Distinction of lymphoid and myeloid clonal hematopoiesis. Nat Med. 2021;27(11):1921‐1927. doi:10.1038/s41591-021-01521-4.
      Van Horebeek L, Dubois B, Goris A. Somatic variants: new kids on the block in human Immunogenetics. Trends Genet. 2019;35(12):935‐947. doi:10.1016/j.tig.2019.09.005.
      Rieux‐Laucat F, Le Deist F, Hivroz C, et al. Mutations in Fas associated with human lymphoproliferative syndrome and autoimmunity. Science. 1995;268(5215):1347‐1349. doi:10.1126/science.7539157.
      Fisher GH, Rosenberg FJ, Straus SE, et al. Dominant interfering Fas gene mutations impair apoptosis in a human autoimmune lymphoproliferative syndrome. Cell. 1995;81(6):935‐946. doi:10.1016/0092-8674(95)90013-6.
      Dowdell KC, Niemela JE, Price S, et al. Somatic FAS mutations are common in patients with genetically undefined autoimmune lymphoproliferative syndrome. Blood. 2010;115(25):5164‐5169. doi:10.1182/blood-2010-01-263145.
      Neven B, Magerus‐Chatinet A, Florkin B, et al. A survey of 90 patients with autoimmune lymphoproliferative syndrome related to TNFRSF6 mutation. Blood. 2011;118(18):4798‐4807. doi:10.1182/blood-2011-04-347641.
      Holzelova E, Vonarbourg C, Stolzenberg MC, et al. Autoimmune lymphoproliferative syndrome with somatic FAS mutations. N Engl J Med. 2004;351(14):1409‐1418. doi:10.1056/NEJMoa040036.
      Magerus‐Chatinet A, Neven B, Stolzenberg MC, et al. Onset of autoimmune lymphoproliferative syndrome (ALPS) in humans as a consequence of genetic defect accumulation. J Clin Invest. 2011;121(1):106‐112. doi:10.1172/JCI43752.
      Jerez A, Clemente MJ, Makishima H, et al. STAT3 mutations unify the pathogenesis of chronic lymphoproliferative disorders of NK cells and T‐cell large granular lymphocyte leukemia. Blood. 2012;120(15):3048‐3057. doi:10.1182/blood-2012-06-435297.
      Fasan A, Kern W, Grossmann V, Haferlach C, Haferlach T, Schnittger S. STAT3 mutations are highly specific for large granular lymphocytic leukemia. Leukemia. 2013;27(7):1598‐1600. doi:10.1038/leu.2012.350.
      Koskela HLM, Eldfors S, Ellonen P, et al. Somatic STAT3 mutations in large granular lymphocytic leukemia. N Engl J Med. 2012;366(20):1905‐1913. doi:10.1056/NEJMoa1114885.
      Gasparini VR, Binatti A, Coppe A, et al. A high definition picture of somatic mutations in chronic lymphoproliferative disorder of natural killer cells. Blood Cancer J. 2020;10(4):42. doi:10.1038/s41408-020-0309-2.
      Andersson EI, Tanahashi T, Sekiguchi N, et al. High incidence of activating STAT5B mutations in CD4‐positive T‐cell large granular lymphocyte leukemia. Blood. 2016;128(20):2465‐2468. doi:10.1182/blood-2016-06-724856.
      Küçük C, Jiang B, Hu X, et al. Activating mutations of STAT5B and STAT3 in lymphomas derived from γδ‐T or NK cells. Nat Commun. 2015;6:6025. doi:10.1038/ncomms7025.
      Epling‐Burnette PK, Liu JH, Catlett‐Falcone R, et al. Inhibition of STAT3 signaling leads to apoptosis of leukemic large granular lymphocytes and decreased Mcl‐1 expression. J Clin Invest. 2001;107(3):351‐362. doi:10.1172/JCI9940.
      Lin JX, Du N, Li P, et al. Critical functions for STAT5 tetramers in the maturation and survival of natural killer cells. Nat Commun. 2017;8(1):1320. doi:10.1038/s41467-017-01477-5.
      Kim D, Park G, Huuhtanen J, et al. STAT3 activation in large granular lymphocyte leukemia is associated with cytokine signaling and DNA hypermethylation. Leukemia. 2021;35(12):3430‐3443. doi:10.1038/s41375-021-01296-0.
      Valori M, Lehikoinen J, Jansson L, et al. High prevalence of low‐allele‐fraction somatic mutations in STAT3 in peripheral blood CD8+ cells in multiple sclerosis patients and controls. PLoS One. 2022;17(11):e0278245. doi:10.1371/journal.pone.0278245.
      Coppe A, Andersson EI, Binatti A, et al. Genomic landscape characterization of large granular lymphocyte leukemia with a systems genetics approach. Leukemia. 2017;31(5):1243‐1246. doi:10.1038/leu.2017.49.
      Olson TL, Cheon H, Xing JC, et al. Frequent somatic TET2 mutations in chronic NK‐LGL leukemia with distinct patterns of cytopenias. Blood. 2021;138(8):662‐673. doi:10.1182/blood.2020005831.
      Huuhtanen J, Bhattacharya D, Lönnberg T, et al. Single‐cell characterization of leukemic and non‐leukemic immune repertoires in CD8+ T‐cell large granular lymphocytic leukemia. Nat Commun. 2022;13(1):1981. doi:10.1038/s41467-022-29173-z.
      Semenzato G, Calabretto G, Barilà G, Gasparini VR, Teramo A, Zambello R. Not all LGL leukemias are created equal. Blood Rev. 2023;60:101058. doi:10.1016/j.blre.2023.101058.
      Fehniger TA, Suzuki K, Ponnappan A, et al. Fatal leukemia in interleukin 15 transgenic mice follows early expansions in natural killer and memory phenotype CD8+ T cells. J Exp Med. 2001;193(2):219‐231. doi:10.1084/jem.193.2.219.
      Mishra A, Liu S, Sams GH, et al. Aberrant overexpression of IL‐15 initiates large granular lymphocyte leukemia through chromosomal instability and DNA hypermethylation. Cancer Cell. 2012;22(5):645‐655. doi:10.1016/j.ccr.2012.09.009.
      Rodríguez‐Caballero A, García‐Montero AC, Bárcena P, et al. Expanded cells in monoclonal TCR‐alphabeta+/CD4+/NKa+/CD8−/+dim T‐LGL lymphocytosis recognize hCMV antigens. Blood. 2008;112(12):4609‐4616. doi:10.1182/blood-2008-03-146241.
      Clemente MJ, Wlodarski MW, Makishima H, et al. Clonal drift demonstrates unexpected dynamics of the T‐cell repertoire in T‐large granular lymphocyte leukemia. Blood. 2011;118(16):4384‐4393. doi:10.1182/blood-2011-02-338517.
      Kerr CM, Clemente MJ, Chomczynski PW, et al. Subclonal STAT3 mutations solidify clonal dominance. Blood Adv. 2019;3(6):917‐921. doi:10.1182/bloodadvances.2018027862.
      Miyazawa H, Wada T. Reversion mosaicism in primary immunodeficiency diseases. Front Immunol. 2021;12:783022. doi:10.3389/fimmu.2021.783022.
      Hirschhorn R, Yang DR, Puck JM, Huie ML, Jiang CK, Kurlandsky LE. Spontaneous in vivo reversion to normal of an inherited mutation in a patient with adenosine deaminase deficiency. Nat Genet. 1996;13(3):290‐295. doi:10.1038/ng0796-290.
      Hirschhorn R, Yang DR, Israni A, Huie ML, Ownby DR. Somatic mosaicism for a newly identified splice‐site mutation in a patient with adenosine deaminase‐deficient immunodeficiency and spontaneous clinical recovery. Am J Hum Genet. 1994;55(1):59‐68.
      Stephan V, Wahn V, Le Deist F, et al. Atypical X‐linked severe combined immunodeficiency due to possible spontaneous reversion of the genetic defect in T cells. N Engl J Med. 1996;335(21):1563‐1567. doi:10.1056/NEJM199611213352104.
      Wada T, Schurman SH, Otsu M, et al. Somatic mosaicism in Wiskott—Aldrich syndrome suggests in vivo reversion by a DNA slippage mechanism. Proc Natl Acad Sci USA. 2001;98(15):8697‐8702. doi:10.1073/pnas.151260498.
      Boztug K, Germeshausen M, Avedillo Díez I, et al. Multiple independent second‐site mutations in two siblings with somatic mosaicism for Wiskott‐Aldrich syndrome. Clin Genet. 2008;74(1):68‐74. doi:10.1111/j.1399-0004.2008.01019.x.
      Ariga T, Kondoh T, Yamaguchi K, et al. Spontaneous in vivo reversion of an inherited mutation in the Wiskott‐Aldrich syndrome. J Immunol. 2001;166(8):5245‐5249. doi:10.4049/jimmunol.166.8.5245.
      Rieux‐Laucat F, Hivroz C, Lim A, et al. Inherited and somatic CD3zeta mutations in a patient with T‐cell deficiency. N Engl J Med. 2006;354(18):1913‐1921. doi:10.1056/NEJMoa053750.
      Blázquez‐Moreno A, Pérez‐Portilla A, Agúndez‐Llaca M, et al. Analysis of the recovery of CD247 expression in a PID patient: insights into the spontaneous repair of defective genes. Blood. 2017;130(10):1205‐1208. doi:10.1182/blood-2017-01-762864.
      Marin AV, Jiménez‐Reinoso A, Briones AC, et al. Primary T‐cell immunodeficiency with functional revertant somatic mosaicism in CD247. J Allergy Clin Immunol. 2017;139(1):347‐349.e8. doi:10.1016/j.jaci.2016.06.020.
      Uzel G, Tng E, Rosenzweig SD, et al. Reversion mutations in patients with leukocyte adhesion deficiency type‐1 (LAD‐1). Blood. 2008;111(1):209‐218. doi:10.1182/blood-2007-04-082552.
      Walker MA, Lareau CA, Ludwig LS, et al. Purifying selection against pathogenic mitochondrial DNA in human T cells. N Engl J Med. 2020;383(16):1556‐1563. doi:10.1056/NEJMoa2001265.
      Lareau CA, Dubois SM, Buquicchio FA, et al. Single‐cell multi‐omics of mitochondrial DNA disorders reveals dynamics of purifying selection across human immune cells. Nat Genet. 2023;55(7):1198‐1209. doi:10.1038/s41588-023-01433-8.
      Pickett SJ, Grady JP, Ng YS, et al. Phenotypic heterogeneity in m.3243A>G mitochondrial disease: the role of nuclear factors. Ann Clin Transl Neurol. 2018;5(3):333‐345. doi:10.1002/acn3.532.
      Nei M, Gojobori T. Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol. 1986;3(5):418‐426. doi:10.1093/oxfordjournals.molbev.a040410.
      Miyata T, Yasunaga T. Molecular evolution of mRNA: a method for estimating evolutionary rates of synonymous and amino acid substitutions from homologous nucleotide sequences and its application. J Mol Evol. 1980;16(1):23‐36. doi:10.1007/BF01732067.
      Goldman N, Yang Z. A codon‐based model of nucleotide substitution for protein‐coding DNA sequences. Mol Biol Evol. 1994;11(5):725‐736. doi:10.1093/oxfordjournals.molbev.a040153.
      Yang Z, Bielawski JP. Statistical methods for detecting molecular adaptation. Trends Ecol Evol. 2000;15(12):496‐503. doi:10.1016/s0169-5347(00)01994-7.
      Martincorena I, Raine KM, Gerstung M, et al. Universal patterns of selection in cancer and somatic tissues. Cell. 2017;171(5):1029‐1041.e21. doi:10.1016/j.cell.2017.09.042.
      Peters J. The role of genomic imprinting in biology and disease: an expanding view. Nat Rev Genet. 2014;15(8):517‐530. doi:10.1038/nrg3766.
      Loda A, Collombet S, Heard E. Gene regulation in time and space during X‐chromosome inactivation. Nat Rev Mol Cell Biol. 2022;23(4):231‐249. doi:10.1038/s41580-021-00438-7.
      Reinius B, Sandberg R. Random monoallelic expression of autosomal genes: stochastic transcription and allele‐level regulation. Nat Rev Genet. 2015;16(11):653‐664. doi:10.1038/nrg3888.
      Gimelbrant A, Hutchinson JN, Thompson BR, Chess A. Widespread monoallelic expression on human autosomes. Science. 2007;318(5853):1136‐1140. doi:10.1126/science.1148910.
      Zwemer LM, Zak A, Thompson BR, et al. Autosomal monoallelic expression in the mouse. Genome Biol. 2012;13(2):R10. doi:10.1186/gb-2012-13-2-r10.
      Deng Q, Ramsköld D, Reinius B, Sandberg R. Single‐cell RNA‐seq reveals dynamic, random monoallelic gene expression in mammalian cells. Science. 2014;343(6167):193‐196. doi:10.1126/science.1245316.
      Kravitz SN, Ferris E, Love MI, Thomas A, Quinlan AR, Gregg C. Random allelic expression in the adult human body. Cell Rep. 2023;42(1):111945. doi:10.1016/j.celrep.2022.111945.
      Reinius B, Mold JE, Ramsköld D, et al. Analysis of allelic expression patterns in clonal somatic cells by single‐cell RNA‐seq. Nat Genet. 2016;48(11):1430‐1435. doi:10.1038/ng.3678.
      Reinius B, Sandberg R. Reply to “High prevalence of clonal monoallelic expression.”. Nat Genet. 2018;50(9):1199‐1200. doi:10.1038/s41588-018-0189-6.
      Vigneau S, Vinogradova S, Savova V, Gimelbrant A. High prevalence of clonal monoallelic expression. Nat Genet. 2018;50(9):1198‐1199. doi:10.1038/s41588-018-0188-7.
      Pernis B, Chiappino G, Kelus AS, Gell PG. Cellular localization of immunoglobulins with different allotypic specificities in rabbit lymphoid tissues. J Exp Med. 1965;122(5):853‐876. doi:10.1084/jem.122.5.853.
      Cebra JJ, Colberg JE, Dray S. Rabbit lymphoid cells differentiated with respect to alpha‐, gamma‐, and mu‐ heavy polypeptide chains and to allotypic markers Aa1 and Aa2. J Exp Med. 1966;123(3):547‐558. doi:10.1084/jem.123.3.547.
      Casanova JL, Romero P, Widmann C, Kourilsky P, Maryanski JL. T cell receptor genes in a series of class I major histocompatibility complex‐restricted cytotoxic T lymphocyte clones specific for a plasmodium berghei nonapeptide: implications for T cell allelic exclusion and antigen‐specific repertoire. J Exp Med. 1991;174(6):1371‐1383. doi:10.1084/jem.174.6.1371.
      Aifantis I, Buer J, von Boehmer H, Azogui O. Essential role of the pre‐T cell receptor in allelic exclusion of the T cell receptor beta locus. Immunity. 1997;7(5):601‐607. doi:10.1016/s1074-7613(00)80381-7.
      Uematsu Y, Ryser S, Dembić Z, et al. In transgenic mice the introduced functional T cell receptor beta gene prevents expression of endogenous beta genes. Cell. 1988;52(6):831‐841. doi:10.1016/0092-8674(88)90425-4.
      Fraenkel S, Mostoslavsky R, Novobrantseva TI, et al. Allelic “choice” governs somatic hypermutation in vivo at the immunoglobulin kappa‐chain locus. Nat Immunol. 2007;8(7):715‐722. doi:10.1038/ni1476.
      Sonoda E, Pewzner‐Jung Y, Schwers S, et al. B cell development under the condition of allelic inclusion. Immunity. 1997;6(3):225‐233. doi:10.1016/s1074-7613(00)80325-8.
      Held W, Roland J, Raulet DH. Allelic exclusion of Ly49‐family genes encoding class I MHC‐specific receptors on NK cells. Nature. 1995;376(6538):355‐358. doi:10.1038/376355a0.
      Held W, Raulet DH. Expression of the Ly49A gene in murine natural killer cell clones is predominantly but not exclusively mono‐allelic. Eur J Immunol. 1997;27(11):2876‐2884. doi:10.1002/eji.1830271120.
      Held W, Kunz B. An allele‐specific, stochastic gene expression process controls the expression of multiple Ly49family genes and generates a diverse, MHC‐specific NK cell receptor repertoire. Eur J Immunol. 1998;28(8):2407‐2416.
      Kissiov DU, Ethell A, Chen S, et al. Binary outcomes of enhancer activity underlie stable random monoallelic expression. elife. 2022;11:e74204. doi:10.7554/eLife.74204.
      Vance RE, Jamieson AM, Cado D, Raulet DH. Implications of CD94 deficiency and monoallelic NKG2A expression for natural killer cell development and repertoire formation. Proc Natl Acad Sci USA. 2002;99(2):868‐873. doi:10.1073/pnas.022500599.
      Chan HW, Kurago ZB, Stewart CA, et al. DNA methylation maintains allele‐specific KIR gene expression in human natural killer cells. J Exp Med. 2003;197(2):245‐255. doi:10.1084/jem.20021127.
      Santourlidis S, Trompeter HI, Weinhold S, et al. Crucial role of DNA methylation in determination of clonally distributed killer cell Ig‐like receptor expression patterns in NK cells. J Immunol. 2002;169(8):4253‐4261. doi:10.4049/jimmunol.169.8.4253.
      Raulet DH, Held W, Correa I, Dorfman JR, Wu MF, Corral L. Specificity, tolerance and developmental regulation of natural killer cells defined by expression of class I‐specific Ly49 receptors. Immunol Rev. 1997;155:41‐52. doi:10.1111/j.1600-065x.1997.tb00938.x.
      Andersson S, Fauriat C, Malmberg JA, Ljunggren HG, Malmberg KJ. KIR acquisition probabilities are independent of self‐HLA class I ligands and increase with cellular KIR expression. Blood. 2009;114(1):95‐104. doi:10.1182/blood-2008-10-184549.
      Noyola DE, Fortuny C, Muntasell A, et al. Influence of congenital human cytomegalovirus infection and the NKG2C genotype on NK‐cell subset distribution in children. Eur J Immunol. 2012;42(12):3256‐3266. doi:10.1002/eji.201242752.
      Bix M, Locksley RM. Independent and epigenetic regulation of the interleukin‐4 alleles in CD4+ T cells. Science. 1998;281(5381):1352‐1354. doi:10.1126/science.281.5381.1352.
      Rivière I, Sunshine MJ, Littman DR. Regulation of IL‐4 expression by activation of individual alleles. Immunity. 1998;9(2):217‐228. doi:10.1016/s1074-7613(00)80604-4.
      Guo L, Hu‐Li J, Paul WE. Probabilistic regulation in TH2 cells accounts for monoallelic expression of IL‐4 and IL‐13. Immunity. 2005;23(1):89‐99. doi:10.1016/j.immuni.2005.05.008.
      Holländer GA, Zuklys S, Morel C, et al. Monoallelic expression of the interleukin‐2 locus. Science. 1998;279(5359):2118‐2121. doi:10.1126/science.279.5359.2118.
      Ng KK, Yui MA, Mehta A, et al. A stochastic epigenetic switch controls the dynamics of T‐cell lineage commitment. elife. 2018;7:e37851. doi:10.7554/eLife.37851.
      Li P, Burke S, Wang J, et al. Reprogramming of T cells to natural killer‐like cells upon Bcl11b deletion. Science. 2010;329(5987):85‐89. doi:10.1126/science.1188063.
      Bigger J. Treatment of staphylococcal infections with penicillin by intermittent sterilisation. Lancet. 1944;244(6320):497‐500. doi:10.1016/S0140-6736(00)74210-3.
      Marine JC, Dawson SJ, Dawson MA. Non‐genetic mechanisms of therapeutic resistance in cancer. Nat Rev Cancer. 2020;20(12):743‐756. doi:10.1038/s41568-020-00302-4.
      Sharma SV, Lee DY, Li B, et al. A chromatin‐mediated reversible drug‐tolerant state in cancer cell subpopulations. Cell. 2010;141(1):69‐80. doi:10.1016/j.cell.2010.02.027.
      Shaffer SM, Dunagin MC, Torborg SR, et al. Rare cell variability and drug‐induced reprogramming as a mode of cancer drug resistance. Nature. 2017;546(7658):431‐435. doi:10.1038/nature22794.
      Shaffer SM, Emert BL, Reyes Hueros RA, et al. Memory sequencing reveals heritable single‐cell gene expression programs associated with distinct cellular behaviors. Cell. 2020;182(4):947‐959.e17. doi:10.1016/j.cell.2020.07.003.
      Goyal Y, Busch GT, Pillai M, et al. Diverse clonal fates emerge upon drug treatment of homogeneous cancer cells. Nature. 2023;620(7974):651‐659. doi:10.1038/s41586-023-06342-8.
      Goyal Y, Dardani IP, Busch GT, et al. Pre‐determined diversity in resistant fates emerges from homogenous cells after anti‐cancer drug treatment. Published online December 9, 2021:2021.12.08.471833. doi:10.1101/2021.12.08.471833.
      Mold JE, Weissman MH, Ratz M, et al. Clonally heritable gene expression imparts a layer of diversity within cell types. Cell Systems. 2024;15(2):149‐165.e10. doi:10.1016/j.cels.2024.01.004.
      Verma M, Michalec L, Sripada A, et al. The molecular and epigenetic mechanisms of innate lymphoid cell (ILC) memory and its relevance for asthma. J Exp Med. 2021;218(7):e20201354. doi:10.1084/jem.20201354.
      Serafini N, Jarade A, Surace L, et al. Trained ILC3 responses promote intestinal defense. Science. 2022;375(6583):859‐863. doi:10.1126/science.aaz8777.
    • Grant Information:
      101055157 HORIZON EUROPE European Research Council
    • Contributed Indexing:
      Keywords: clonality; immune memory; natural killer cells; viral infection
    • Publication Date:
      Date Created: 20240320 Date Completed: 20240517 Latest Revision: 20240529
    • Publication Date:
      20240529
    • Accession Number:
      10.1111/imr.13324
    • Accession Number:
      38506411