Genome-Wide Association Study of Atorvastatin Pharmacokinetics: Associations With SLCO1B1, UGT1A3, and LPP.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Wiley Country of Publication: United States NLM ID: 0372741 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1532-6535 (Electronic) Linking ISSN: 00099236 NLM ISO Abbreviation: Clin Pharmacol Ther Subsets: MEDLINE
    • Publication Information:
      Publication: 2015- : Hoboken, NJ : Wiley
      Original Publication: St. Louis : C.V. Mosby
    • Subject Terms:
    • Abstract:
      In a genome-wide association study of atorvastatin pharmacokinetics in 158 healthy volunteers, the SLCO1B1 c.521T>C (rs4149056) variant associated with increased area under the plasma concentration-time curve from time zero to infinity (AUC 0-∞ ) of atorvastatin (P = 1.2 × 10 -10 ), 2-hydroxy atorvastatin (P = 4.0 × 10 -8 ), and 4-hydroxy atorvastatin (P = 2.9 × 10 -8 ). An intronic LPP variant, rs1975991, associated with reduced atorvastatin lactone AUC 0-∞ (P = 3.8 × 10 -8 ). Three UGT1A variants linked with UGT1A3*2 associated with increased 2-hydroxy atorvastatin lactone AUC 0-∞ (P = 3.9 × 10 -8 ). Furthermore, a candidate gene analysis including 243 participants suggested that increased function SLCO1B1 variants and decreased activity CYP3A4 variants affect atorvastatin pharmacokinetics. Compared with individuals with normal function SLCO1B1 genotype, atorvastatin AUC 0-∞ was 145% (90% confidence interval: 98-203%; P = 5.6 × 10 -11 ) larger in individuals with poor function, 24% (9-41%; P = 0.0053) larger in those with decreased function, and 41% (16-59%; P = 0.016) smaller in those with highly increased function SLCO1B1 genotype. Individuals with intermediate metabolizer CYP3A4 genotype (CYP3A4*2 or CYP3A4*22 heterozygotes) had 33% (14-55%; P = 0.022) larger atorvastatin AUC 0-∞ than those with normal metabolizer genotype. UGT1A3*2 heterozygotes had 16% (5-25%; P = 0.017) smaller and LPP rs1975991 homozygotes had 34% (22-44%; P = 4.8 × 10 -5 ) smaller atorvastatin AUC 0-∞ than noncarriers. These data demonstrate that genetic variation in SLCO1B1, UGT1A3, LPP, and CYP3A4 affects atorvastatin pharmacokinetics. This is the first study to suggest that LPP rs1975991 may reduce atorvastatin exposure. [Correction added on 6 April, after first online publication: An incomplete sentence ("= 0.017) smaller in heterozygotes for UGT1A3*2 and 34% (22%, 44%; P × 10 -5 ) smaller in homozygotes for LPP noncarriers.") has been corrected in this version.].
      (© 2024 The Authors. Clinical Pharmacology & Therapeutics published by Wiley Periodicals LLC on behalf of American Society for Clinical Pharmacology and Therapeutics.)
    • References:
      Alfirevic, A. et al. Phenotype standardization for statin‐induced myotoxicity. Clin. Pharmacol. Ther. 96, 470–476 (2014).
      Cooper‐DeHoff, R.M. et al. The Clinical Pharmacogenetics Implementation Consortium guideline for SLCO1B1, ABCG2, and CYP2C9 genotypes and statin‐associated musculoskeletal symptoms. Clin. Pharmacol. Ther. 111, 1007–1021 (2022).
      Neuvonen, P.J., Niemi, M. & Backman, J.T. Drug interactions with lipid‐lowering drugs: mechanisms and clinical relevance. Clin. Pharmacol. Ther. 80, 565–581 (2006).
      Voora, D. et al. SLCO1B1*5 allele is associated with atorvastatin discontinuation and adverse muscle symptoms in the context of routine care. Clin. Pharmacol. Ther. 111, 1075–1083 (2022).
      Lennernäs, H. Clinical pharmacokinetics of atorvastatin. Clin. Pharmacokinet. 42, 1141–1160 (2003).
      Filppula, A.M. et al. Comparative hepatic and intestinal metabolism and pharmacodynamics of statins. Drug Metab. Dispos. 49, 658–667 (2021).
      Jacobsen, W. et al. Lactonization is the critical first step in the disposition of the 3‐hydroxy‐3‐methylglutaryl‐CoA reductase inhibitor atorvastatin. Drug Metab. Dispos. 28, 1369–1378 (2000).
      Prueksaritanont, T. et al. Glucuronidation of statins in animals and humans: a novel mechanism of statin lactonization. Drug Metab. Dispos. 30, 505–512 (2002).
      Schirris, T.J.J., Ritschel, T., Bilos, A., Smeitink, J.A.M. & Russel, F.G.M. Statin Lactonization by uridine 5’‐Diphospho‐glucuronosyltransferases (UGTs). Mol. Pharm. 12, 4048–4055 (2015).
      Riedmaier, S. et al. Paraoxonase (PON1 and PON3) polymorphisms: impact on liver expression and atorvastatin‐lactone hydrolysis. Front. Pharmacol. 2, 41 (2011).
      Pasanen, M.K., Fredrikson, H., Neuvonen, P.J. & Niemi, M. Different effects of SLCO1B1 polymorphism on the pharmacokinetics of atorvastatin and rosuvastatin. Clin. Pharmacol. Ther. 82, 726–733 (2007).
      Kameyama, Y., Yamashita, K., Kobayashi, K., Hosokawa, M. & Chiba, K. Functional characterization of SLCO1B1 (OATP‐C) variants, SLCO1B1*5, SLCO1B1*15 and SLCO1B1*15+C1007G, by using transient expression systems of HeLa and HEK293 cells. Pharmacogenet. Genomics 15, 513–522 (2005).
      Schwarz, U.I. et al. Identification of novel functional organic anion‐transporting polypeptide 1B3 polymorphisms and assessment of substrate specificity. Pharmacogenet. Genomics 21, 103–114 (2011).
      Grube, M. et al. Organic anion transporting polypeptide 2B1 is a high‐affinity transporter for atorvastatin and is expressed in the human heart. Clin. Pharmacol. Ther. 80, 607–620 (2006).
      Chen, C. et al. Differential interaction of 3‐hydroxy‐3‐methylglutaryl‐coa reductase inhibitors with ABCB1, ABCC2, and OATP1B1. Drug Metab. Dispos. 33, 537–546 (2005).
      Keskitalo, J.E., Zolk, O., Fromm, M.F., Kurkinen, K.J., Neuvonen, P.J. & Niemi, M. ABCG2 polymorphism markedly affects the pharmacokinetics of atorvastatin and rosuvastatin. Clin. Pharmacol. Ther. 86, 197–203 (2009).
      Knauer, M.J. et al. Human skeletal muscle drug transporters determine local exposure and toxicity of statins. Circ. Res. 106, 297–306 (2010).
      Lau, Y.Y., Okochi, H., Huang, Y. & Benet, L.Z. Multiple transporters affect the disposition of atorvastatin and its two active hydroxy metabolites: application of in vitro and ex situ systems. J. Pharmacol. Exp. Ther. 316, 762–771 (2006).
      Deng, F. et al. Comparative hepatic and intestinal efflux transport of statins. Drug Metab. Dispos. 49, 750–759 (2021).
      Turner, R.M. et al. A genome‐wide association study of circulating levels of atorvastatin and its major metabolites. Clin. Pharmacol. Ther. 108, 287–297 (2020).
      Riedmaier, S. et al. UDP‐glucuronosyltransferase (UGT) polymorphisms affect atorvastatin lactonization in vitro and in vivo. Clin. Pharmacol. Ther. 87, 65–73 (2010).
      Birmingham, B.K. et al. Impact of ABCG2 and SLCO1B1 polymorphisms on pharmacokinetics of rosuvastatin, atorvastatin and simvastatin acid in Caucasian and Asian subjects: a class effect? Eur. J. Clin. Pharmacol. 71, 341–355 (2015).
      Keskitalo, J.E., Kurkinen, K.J., Neuvoneni, P.J. & Niemi, M. ABCB1 haplotypes differentially affect the pharmacokinetics of the acid and lactone forms of simvastatin and atorvastatin. Clin. Pharmacol. Ther. 84, 457–461 (2008).
      Wang, D., Guo, Y., Wrighton, S.A., Cooke, G.E. & Sadee, W. Intronic polymorphism in CYP3A4 affects hepatic expression and response to statin drugs. Pharmacogenomics J. 11, 274–286 (2011).
      Stephens, M., Smith, N.J. & Donnelly, P. A new statistical method for haplotype reconstruction from population data. Am. J. Hum. Genet. 68, 978–989 (2001).
      Stephens, M. & Scheet, P. Accounting for decay of linkage disequilibrium in haplotype inference and missing‐data imputation. Am. J. Hum. Genet. 76, 449–462 (2005).
      Gaedigk, A., Ingelman‐Sundberg M., Miller N. A., Leeder J. S., Whirl‐Carrillo M., Klein T. E.; PharmVar Steering Committee. The Pharmacogene Variation (PharmVar) Consortium: incorporation of the human cytochrome P450 (CYP) allele nomenclature database. Clin. Pharmacol. Ther. 103, 399–401 (2018).
      Gaedigk, A., Sangkuhl K., Whirl‐Carrillo M., Twist G. P., Klein T. E., Miller N. A., PharmVar Steering Committee The evolution of PharmVar. Clin. Pharmacol. Ther. 105, 29–32 (2019).
      Neuvonen, M., Tornio, A., Hirvensalo, P., Backman, J.T. & Niemi, M. Performance of plasma coproporphyrin I and III as OATP1B1 biomarkers in humans. Clin. Pharmacol. Ther. 110, 1622–1632 (2021).
      Mykkänen, A.J.H. et al. Genomewide association study of simvastatin pharmacokinetics. Clin. Pharmacol. Ther. 112, 676–686 (2022).
      Tremmel, R. et al. Hepatic expression of the Na+‐taurocholate cotransporting polypeptide is independent from genetic variation. Int. J. Mol. Sci. 23, 7468 (2022).
      Klein, K. et al. PPARA: a novel genetic determinant of CYP3A4 in vitro and in vivo. Clin. Pharmacol. Ther. 91, 1044–1052 (2012).
      Lau, Y.Y., Huang, Y., Frassetto, L. & Benet, L.Z. Effect of OATP1B transporter inhibition on the pharmacokinetics of atorvastatin in healthy volunteers. Clin. Pharmacol. Ther. 81, 194–204 (2007).
      Nies, A.T. et al. Genetics is a major determinant of expression of the human hepatic uptake transporter OATP1B1, but not of OATP1B3 and OATP2B1. Genome Med. 5, 1 (2013).
      Neuvonen, M. et al. Identification of glycochenodeoxycholate 3‐O‐glucuronide and glycodeoxycholate 3‐O‐glucuronide as highly sensitive and specific OATP1B1 biomarkers. Clin. Pharmacol. Ther. 109, 646–657 (2021).
      Ramsey, L.B. et al. Association of SLCO1B1 *14 allele with poor response to methotrexate in juvenile idiopathic arthritis patients. ACR Open Rheumatol. 1, 58–62 (2019).
      Lehtisalo, M. et al. A comprehensive pharmacogenomic study indicates roles for SLCO1B1, ABCG2 and SLCO2B1 in rosuvastatin pharmacokinetics. Br. J. Clin. Pharmacol. 89, 242–252 (2023).
      Ishii, Y. et al. Alteration of the function of the UDP‐glucuronosyltransferase 1A subfamily by cytochrome P450 3A4: different susceptibility for UGT isoforms and UGT1A1/7 variants. Drug Metab. Dispos. 42, 229–238 (2014).
      Miyauchi, Y. et al. UDP‐glucuronosyltransferase (UGT)‐mediated attenuations of cytochrome P450 3A4 activity: UGT isoform‐dependent mechanism of suppression. Br. J. Pharmacol. 177, 1077–1089 (2020).
      Niemi, M., Backman, J.T., Fromm, M.F., Neuvonen, P.J. & Kivistö, K.T. Pharmacokinetic interactions with rifampicin: clinical relevance. Clin. Pharmacokinet. 42, 819–850 (2003).
      Backman, J.T., Luurila, H., Neuvonen, M. & Neuvonen, P.J. Rifampin markedly decreases and gemfibrozil increases the plasma concentrations of atorvastatin and its metabolites. Clin. Pharmacol. Ther. 78, 154–167 (2005).
      Gorenne, I., Nakamoto, R.K., Phelps, C.P., Beckerle, M.C., Somlyo, A.V. & Somlyo, A.P. LPP, a LIM protein highly expressed in smooth muscle. Am. J. Physiol. Cell Physiol. 285, C674–C685 (2003).
      Ngan, E., Kiepas, A., Brown, C.M. & Siegel, P.M. Emerging roles for LPP in metastatic cancer progression. J. Cell Commun. Signal. 12, 143–156 (2018).
      Sata, F. et al. CYP3A4 allelic variants with amino acid substitutions in exons 7 and 12: evidence for an allelic variant with altered catalytic activity. Clin. Pharmacol. Ther. 67, 48–56 (2000).
      Miyazaki, M., Nakamura, K., Fujita, Y., Guengerich, F.P., Horiuchi, R. & Yamamoto, K. Defective activity of recombinant cytochromes P450 3A4.2 and 3A4.16 in oxidation of midazolam, nifedipine, and testosterone. Drug Metab. Dispos. 36, 2287–2291 (2008).
      Akiyoshi, T. et al. Comparison of the inhibitory profiles of itraconazole and cimetidine in cytochrome P450 3A4 genetic variants. Drug Metab. Dispos. 39, 724–728 (2011).
      Kantola, T., Kivistö, K.T. & Neuvonen, P.J. Effect of itraconazole on the pharmacokinetics of atorvastatin. Clin. Pharmacol. Ther. 64, 58–65 (1998).
      Lauritzen, T. et al. Atorvastatin metabolite pattern in skeletal muscle and blood from patients with coronary heart disease and statin‐associated muscle symptoms. Clin. Pharmacol. Ther. 113, 887–895 (2023).
      Cho, S.K., Oh, E.S., Park, K., Park, M.S. & Chung, J.Y. The UGT1A3*2 polymorphism affects atorvastatin lactonization and lipid‐lowering effect in healthy volunteers. Pharmacogenet. Genomics 22, 598–605 (2012).
    • Grant Information:
      282106 International ERC_ European Research Council
    • Accession Number:
      A0JWA85V8F (Atorvastatin)
      EC 1.14.14.55 (CYP3A4 protein, human)
      EC 1.14.14.1 (Cytochrome P-450 CYP3A)
      EC 2.4.1.17 (Glucuronosyltransferase)
      0 (Hydroxymethylglutaryl-CoA Reductase Inhibitors)
      0 (Liver-Specific Organic Anion Transporter 1)
      0 (SLCO1B1 protein, human)
      EC 2.4.1.- (UDP-glucuronosyltransferase, UGT1A3)
      0 (LPP protein, human)
      0 (LIM Domain Proteins)
      0 (Cytoskeletal Proteins)
    • Publication Date:
      Date Created: 20240317 Date Completed: 20240513 Latest Revision: 20240709
    • Publication Date:
      20240710
    • Accession Number:
      10.1002/cpt.3236
    • Accession Number:
      38493369