Hepatobiliary circulation and dominant urinary excretion of homogentisic acid in a mouse model of alkaptonuria.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Wiley Country of Publication: United States NLM ID: 7910918 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1573-2665 (Electronic) Linking ISSN: 01418955 NLM ISO Abbreviation: J Inherit Metab Dis Subsets: MEDLINE
    • Publication Information:
      Publication: 2019- : [Hoboken, NJ] : Wiley
      Original Publication: [Lancaster, Eng.] MTP Press.
    • Subject Terms:
    • Abstract:
      Altered activity of specific enzymes in phenylalanine-tyrosine (phe-tyr) metabolism results in incomplete breakdown of various metabolite substrates in this pathway. Increased biofluid concentration and tissue accumulation of the phe-tyr pathway metabolite homogentisic acid (HGA) is central to pathophysiology in the inherited disorder alkaptonuria (AKU). Accumulation of metabolites upstream of HGA, including tyrosine, occurs in patients on nitisinone, a licenced drug for AKU and hereditary tyrosinaemia type 1, which inhibits the enzyme responsible for HGA production. The aim of this study was to investigate the phe-tyr metabolite content of key biofluids and tissues in AKU mice on and off nitisinone to gain new insights into the biodistribution of metabolites in these altered metabolic states. The data show for the first time that HGA is present in bile in AKU (mean [±SD] = 1003[±410] μmol/L; nitisinone-treated AKU mean [±SD] = 45[±23] μmol/L). Biliary tyrosine, 3(4-hydroxyphenyl)pyruvic acid (HPPA) and 3(4-hydroxyphenyl)lactic acid (HPLA) are also increased on nitisinone. Urine was confirmed as the dominant elimination route of HGA in untreated AKU, but with indication of biliary excretion. These data provide new insights into pathways of phe-tyr metabolite biodistribution and metabolism, showing for the first time that hepatobiliary excretion contributes to the total pool of metabolites in this pathway. Our data suggest that biliary elimination of organic acids and other metabolites may play an underappreciated role in disorders of metabolism. We propose that our finding of approximately 3.8 times greater urinary HGA excretion in AKU mice compared with patients is one reason for the lack of extensive tissue ochronosis in the AKU mouse model.
      (© 2024 The Authors. Journal of Inherited Metabolic Disease published by John Wiley & Sons Ltd on behalf of SSIEM.)
    • References:
      Kretchmer N, Etzwiler DD. Disorders associated with the metabolism of phenylalanine and tyrosine. Pediatrics. 1958;21(3):445‐475. doi:10.1542/peds.21.3.445.
      La Du BN, Zannoni VG, Laster L, Seegmiller JE. The nature of the defect in tyrosine metabolism in alcaptonuria. J Biol Chem. 1958;230(1):251‐260.
      Ranganath LR, Milan A, Hughes A, et al. Homogentisic acid is not only eliminated by glomerular filtration and tubular secretion but also produced in the kidney in alkaptonuria. J Inherit Metab Dis. 2020;43(4):737‐747.
      La Du BN, O'Brien WM, Zannoni VG. Studies on ochronosis. I. The distribution of homogentisic acid in Guinea pigs. Arthritis Rheum. 1962;5(1):81‐87. doi:10.1002/art.1780050110.
      Zannoni VG, Malawista SE, La Du BN, Studies on ochronosis. II. Studies on benzoquinoneacetic acid, a probable intermediate in the connective tissue pigmentation of alcaptonuria. Arthritis Rheum Published online. 1962;5:547‐556. doi:10.1002/art.1780050603.
      Phornphutkul C, Introne WJ, Perry MB, et al. Natural history of alkaptonuria. N Engl J Med. 2002;347:2111‐2121. doi:10.1056/nejmoa021736.
      Ranganath LR, Cox TF. Natural history of alkaptonuria revisited: analyses based on scoring systems. J Inherit Metab Dis. 2011;34:1141‐1151. doi:10.1007/s10545‐011‐9374‐9.
      Ranganath LR, Jarvis JC, Gallagher JA. Recent advances in management of alkaptonuria (invited review; best practice article). J Clin Pathol. 2013;66(5):367‐373. doi:10.1136/jclinpath‐2012‐200877.
      Braconi D, Millucci L, Bernardini G, Santucci A. Oxidative stress and mechanisms of ochronosis in alkaptonuria. Free Radic Biol Med. 2015;88:70‐80. doi:10.1016/j.freeradbiomed.2015.02.021.
      Ranganath LR, Psarelli EE, Arnoux JB, et al. Efficacy and safety of once‐daily nitisinone for patients with alkaptonuria (SONIA 2): an international, multicentre, open‐label, randomised controlled trial. Lancet Diabetes Endocrinol. 2020;8(9):762‐772. doi:10.1016/S2213‐8587(20)30228‐X.
      Ranganath LR, Khedr M, Milan AM, et al. Nitisinone arrests ochronosis and decreases rate of progression of alkaptonuria: evaluation of the effect of nitisinone in the United Kingdom National Alkaptonuria Centre. Mol Genet Metab. 2018;125(1–2):127‐134. doi:10.1016/j.ymgme.2018.07.011.
      Preston AJ, Keenan CM, Sutherland H, et al. Ochronotic osteoarthropathy in a mouse model of alkaptonuria, and its inhibition by nitisinone. Ann Rheum Dis. 2014;73(1):284‐289. doi:10.1136/annrheumdis‐2012‐202878.
      Keenan CM, Preston AJ, Sutherland H, et al. Nitisinone arrests but does not reverse ochronosis in alkaptonuric mice. JIMD Rep. 2015;24:45‐50. doi:10.1007/8904_2015_437.
      van Ginkel WG, Jahja R, Huijbregts SCJ, et al. Neurocognitive outcome in tyrosinemia type 1 patients compared to healthy controls. Orphanet J Rare Dis. 2016;11(1):87. doi:10.1186/s13023‐016‐0472‐5.
      McKiernan PJ. Nitisinone for the treatment of hereditary tyrosinemia type I. Expert Opin Orphan Drugs. 2013;1:491‐497. doi:10.1517/21678707.2013.800807.
      White A, Tchan MC. Nitisinone‐induced keratopathy in alkaptonuria: a challenging diagnosis despite clinical suspicion. JIMD Rep. 2018;40:7‐9. doi:10.1007/8904_2017_56.
      Stewart RMK, Briggs MC, Jarvis JC, Gallagher JA, Ranganath L. Reversible keratopathy due to hypertyrosinaemia following intermittent low‐dose nitisinone in alkaptonuria: a case report. JIMD Rep. 2014;17:1‐6. doi:10.1007/8904_2014_307.
      Ranganath L, Khedr M, Evans LA, Bygott H, Luangrath E, West E. Vitiligo, alkaptonuria, and nitisinone‐a report of three families and review of the literature. JIMD Rep. 2021;61(1):25‐33. doi:10.1002/jmd2.12225.
      Khedr M, Judd S, Briggs MC, et al. Asymptomatic corneal keratopathy secondary to hypertyrosinaemia following low dose nitisinone and a literature review of tyrosine keratopathy in alkaptonuria. JIMD Rep. 2018;40:31‐37. doi:10.1007/8904_2017_62.
      Roberts NB, Curtis SA, Milan AM, Ranganath LR. The pigment in alkaptonuria relationship to melanin and other coloured substances: a review of metabolism, composition and chemical analysis. JIMD Rep. 2015;24:51‐66. doi:10.1007/8904_2015_453.
      Chow WY, Norman BP, Roberts NB, et al. Pigmentation chemistry and radical‐based collagen degradation in alkaptonuria and osteoarthritic cartilage. Angew Chem Int Ed Engl. 2020;59(29):11937‐11942. doi:10.1002/ANIE.202000618.
      Chow WY, Taylor AM, Reid DG, Gallagher JA, Duer MJ. Collagen atomic scale molecular disorder in ochronotic cartilage from an alkaptonuria patient, observed by solid state NMR. J Inherit Metab Dis. 2011;34(6):1137‐1140. doi:10.1007/s10545‐011‐9373‐x.
      Gallagher JA, Dillon JP, Sireau N, Timmis O, Ranganath LR. Alkaptonuria: an example of a “fundamental disease”—a rare disease with important lessons for more common disorders. Semin Cell Dev Biol. 2016;52:53‐57. doi:10.1016/j.semcdb.2016.02.020.
      Taylor AM, Wlodarski B, Prior IA, et al. Ultrastructural examination of tissue in a patient with alkaptonuric arthropathy reveals a distinct pattern of binding of ochronotic pigment. Rheumatology. 2010;49(7):1412‐1414. doi:10.1093/rheumatology/keq027.
      Ranganath LR, Milan AM, Hughes AT, et al. Suitability of nitisinone in alkaptonuria 1 (SONIA 1): an international, multicentre, randomised, open‐label, no‐treatment controlled, parallel‐group, dose‐response study to investigate the effect of once daily nitisinone on 24‐h urinary homogentisic acid. Ann Rheum Dis. 2016;75(2):362‐367. doi:10.1136/annrheumdis‐2014‐206033.
      Norman BP, Davison AS, Hickton B, et al. Comprehensive biotransformation analysis of phenylalanine‐tyrosine metabolism reveals alternative routes of metabolite clearance in Nitisinone‐treated alkaptonuria. Metabolites. 2022;12(10):927. doi:10.3390/metabo12100927.
      Ranganath LR, Hughes AT, Davison AS, et al. Revisiting quantification of phenylalanine/tyrosine flux in the ochronotic pathway during long‐term nitisinone treatment of alkaptonuria. Metabolites. 2022;12(10):920. doi:10.3390/metabo12100920.
      Milan AM, Hughes AT, Davison AS, et al. Quantification of the flux of tyrosine pathway metabolites during nitisinone treatment of alkaptonuria. Sci Rep. 2019;9(1):1‐9. doi:10.1038/s41598‐019‐46033‐x.
      Boyer JL. Bile formation and secretion. Compr Physiol. 2013;3(3):1035‐1078. doi:10.1002/cphy.c120027.
      Hughes JH, Liu K, Plagge A, et al. Conditional targeting in mice reveals that hepatic homogentisate 1,2‐dioxygenase activity is essential in reducing circulating homogentisic acid and for effective therapy in the genetic disease alkaptonuria. Hum Mol Genet. 2019;28(23):3928‐3939.
      Keppler D, König J, Büchler M. The canalicular multidrug resistance protein, cMRP/MRP2, a novel conjugate export pump expressed in the apical membrane of hepatocytes. Adv Enzym Regul. 1997;37:321‐333. doi:10.1016/s0065‐2571(96)00013‐1.
      König J, Nies AT, Cui Y, Leier I, Keppler D. Conjugate export pumps of the multidrug resistance protein (MRP) family: localization, substrate specificity, and MRP2‐mediated drug resistance. Biochim Biophys Acta. 1999;1461(2):377‐394. doi:10.1016/s0005‐2736(99)00169‐8.
      Avadhanula S, Introne WJ, Auh S, et al. Assessment of thyroid function in patients with alkaptonuria. JAMA Netw Open. 2020;3(3):e201357. doi:10.1001/jamanetworkopen.2020.1357.
      Hughes AT, Milan AM, Davison AS, et al. Serum markers in alkaptonuria: simultaneous analysis of homogentisic acid, tyrosine and nitisinone by liquid chromatography tandem mass spectrometry. Ann Clin Biochem. 2015;52(5):597‐605. doi:10.1177/0004563215571969.
      Hughes A, Milan A, Christensen P, et al. Urine homogentisic acid and tyrosine: simultaneous analysis by liquid chromatography tandem mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci. 2014;963:106‐112.
      Hughes AT, Milan AM, Shweihdi E, Gallagher J, Ranganath L. Method development and validation for analysis of phenylalanine, 4‐hydroxyphenyllactic acid and 4‐hydroxyphenylpyruvic acid in serum and urine. JIMD Rep. 2022;63(4):341‐350. doi:10.1002/jmd2.12287.
      Segar JL, Balapattabi K, Reho JJ, Grobe CC, Burnett CML, Grobe JL. Quantification of body fluid compartmentalization by combined time‐domain nuclear magnetic resonance and bioimpedance spectroscopy. Am J Physiol Regul Integr Comp Physiol. 2021;320(1):R44‐R54. doi:10.1152/ajpregu.00227.2020.
      Stechman MJ, Ahmad BN, Loh NY, et al. Establishing normal plasma and 24‐hour urinary biochemistry ranges in C3H, BALB/c and C57BL/6J mice following acclimatization in metabolic cages. Lab Anim. 2010;44(3):218‐225. doi:10.1258/la.2010.009128.
      Debray D, El Mourabit H, Merabtene F, et al. Diet‐induced dysbiosis and genetic background synergize with cystic fibrosis transmembrane conductance regulator deficiency to promote cholangiopathy in mice. Hepatol Commun. 2018;2(12):1533‐1549. doi:10.1002/hep4.1266.
      Pedreira F, Tepperman J. Bile flow rate and cholesterol content in mice fed a gallstone‐inducing diet. Am J Phys. 1964;206:635‐640. doi:10.1152/ajplegacy.1964.206.3.635.
      Meneton P, Ichikawa I, Inagami T, Schnermann J. Renal physiology of the mouse. Am J Physiol Renal Physiol. 2000;278(3):F339‐F351. doi:10.1152/ajprenal.2000.278.3.F339.
      Yamazaki M, Suzuki H, Sugiyama Y. Recent advances in carrier‐mediated hepatic uptake and biliary excretion of xenobiotics. Pharm Res. 1996;13(4):497‐513. doi:10.1023/a:1016077517241.
      Norman BP, Davison AS, Hughes JH, et al. Metabolomic studies in the inborn error of metabolism alkaptonuria reveal new biotransformations in tyrosine metabolism. Genes Dis. 2022;9(4):1129‐1142. doi:10.1016/j.gendis.2021.02.007.
      Bülow C, Rosenberg J. Intrahepatic gallstones in patient with alkaptonuria. Ugeskr Laeger. 2009;171(26):2198‐2199.
      Chang TM, Bourget L, Lister C. A new theory of enterorecirculation of amino acids and its use for depleting unwanted amino acids using oral enzyme‐artificial cells, as in removing phenylalanine in phenylketonuria. Artif Cells Blood Substit Immobil Biotechnol. 1995;23(1):1‐21. doi:10.3109/10731199509117665.
      Bröer A, Klingel K, Kowalczuk S, Rasko JEJ, Cavanaugh J, Bröer S. Molecular cloning of mouse amino acid transport system B0, a neutral amino acid transporter related to Hartnup disorder. J Biol Chem. 2004;279(23):24467‐24476. doi:10.1074/jbc.M400904200.
      Laberge C, Lescault A, Grenier A, et al. Oral loading of homogentisic acid in controls and in obligate heterozygotes for hereditary tyrosinemia type I. Am J Hum Genet. 1990;47(2):329‐337.
      Russell W, Duthie G. Plant secondary metabolites and gut health: the case for phenolic acids. Proc Nutr Soc. 2011;70(3):389‐396. doi:10.1017/S0029665111000152.
      Montagutelli X, Lalouette A, Coudé M, Kamoun P, Forest M, Guénet JL. aku, a mutation of the mouse homologous to human alkaptonuria, maps to chromosome 16. Genomics. 1994;19(1):9‐11. doi:10.1006/geno.1994.1004.
      Han S, Zhang R, Jain R, et al. Circadian control of bile acid synthesis by a KLF15‐Fgf15 axis. Nat Commun. 2015;6:7231. doi:10.1038/ncomms8231.
      Norman BP, Davison AS, Ross GA, et al. A comprehensive LC‐QTOF‐MS metabolic phenotyping strategy: application to alkaptonuria. Clin Chem. 2019;65(4):530‐539. doi:10.1373/clinchem.2018.295345.
    • Grant Information:
      1101052 Alkaptonuria Society
    • Contributed Indexing:
      Keywords: hepatobiliary circulation; homogentisic acid; organic acids; tyrosine disorders; tyrosine metabolites
    • Accession Number:
      NP8UE6VF08 (Homogentisic Acid)
      K5BN214699 (nitisinone)
      0 (Nitrobenzoates)
      0 (Cyclohexanones)
      42HK56048U (Tyrosine)
      47E5O17Y3R (Phenylalanine)
    • Publication Date:
      Date Created: 20240315 Date Completed: 20240717 Latest Revision: 20240717
    • Publication Date:
      20240717
    • Accession Number:
      10.1002/jimd.12728
    • Accession Number:
      38487984