Dissecting the molecular basis of spike traits by integrating gene regulatory networks and genetic variation in wheat.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Published by the Plant Communications Shanghai Office in association with Cell Press, an imprint of Elsevier Inc Country of Publication: China NLM ID: 101769147 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2590-3462 (Electronic) Linking ISSN: 25903462 NLM ISO Abbreviation: Plant Commun Subsets: MEDLINE
    • Publication Information:
      Original Publication: [Shanghai] : Published by the Plant Communications Shanghai Office in association with Cell Press, an imprint of Elsevier Inc., [2020]-
    • Subject Terms:
    • Abstract:
      Spike architecture influences both grain weight and grain number per spike, which are the two major components of grain yield in bread wheat (Triticum aestivum L.). However, the complex wheat genome and the influence of various environmental factors pose challenges in mapping the causal genes that affect spike traits. Here, we systematically identified genes involved in spike trait formation by integrating information on genomic variation and gene regulatory networks controlling young spike development in wheat. We identified 170 loci that are responsible for variations in spike length, spikelet number per spike, and grain number per spike through genome-wide association study and meta-QTL analyses. We constructed gene regulatory networks for young inflorescences at the double ridge stage and the floret primordium stage, in which the spikelet meristem and the floret meristem are predominant, respectively, by integrating transcriptome, histone modification, chromatin accessibility, eQTL, and protein-protein interactome data. From these networks, we identified 169 hub genes located in 76 of the 170 QTL regions whose polymorphisms are significantly associated with variation in spike traits. The functions of TaZF-B1, VRT-B2, and TaSPL15-A/D in establishment of wheat spike architecture were verified. This study provides valuable molecular resources for understanding spike traits and demonstrates that combining genetic analysis and developmental regulatory networks is a robust approach for dissection of complex traits.
      (Copyright © 2024 The Author(s). Published by Elsevier Inc. All rights reserved.)
    • References:
      Plant Cell. 2021 Aug 13;33(7):2296-2319. (PMID: 34009390)
      Plant Biotechnol J. 2022 Jan;20(1):75-88. (PMID: 34487615)
      Nature. 2023 May;617(7959):118-124. (PMID: 37100915)
      Nucleic Acids Res. 2017 Apr 7;45(6):e41. (PMID: 27903897)
      Plant Physiol. 2015 Jan;167(1):189-99. (PMID: 25398545)
      Nat Genet. 2016 May;48(5):481-7. (PMID: 27019110)
      Proc Natl Acad Sci U S A. 2019 Mar 12;116(11):5182-5187. (PMID: 30792353)
      Mol Plant. 2021 Sep 6;14(9):1472-1488. (PMID: 34048948)
      J Exp Bot. 2023 Jan 1;74(1):40-71. (PMID: 36334052)
      Nature. 2022 Feb;602(7895):101-105. (PMID: 35022609)
      Plant Biotechnol J. 2022 May;20(5):920-933. (PMID: 34978137)
      Development. 2019 Jul 23;146(14):. (PMID: 31337701)
      Nat Genet. 2023 Aug;55(8):1381-1389. (PMID: 37500729)
      Mol Plant. 2020 Sep 7;13(9):1311-1327. (PMID: 32702458)
      Theor Appl Genet. 2022 Mar;135(3):1049-1081. (PMID: 34985537)
      Plant Physiol. 2017 Jul;174(3):1779-1794. (PMID: 28515146)
      Theor Appl Genet. 2020 Jun;133(6):1811-1823. (PMID: 32062676)
      Genome Biol. 2023 Apr 4;24(1):65. (PMID: 37016448)
      J Exp Bot. 2015 Sep;66(19):5945-58. (PMID: 26157170)
      Annu Rev Plant Biol. 2010;61:395-420. (PMID: 20192747)
      Development. 2017 Jun 1;144(11):1959-1965. (PMID: 28455374)
      J Integr Plant Biol. 2019 Mar;61(3):278-295. (PMID: 30609316)
      New Phytol. 2017 Apr;214(1):257-270. (PMID: 27918076)
      Bioinformatics. 2014 Aug 1;30(15):2114-20. (PMID: 24695404)
      Mol Plant. 2020 Dec 7;13(12):1733-1751. (PMID: 32896642)
      Mol Plant. 2021 Sep 6;14(9):1408-1411. (PMID: 34048949)
      Plant Physiol. 2022 Jun 27;189(3):1536-1552. (PMID: 35377414)
      Plant Sci. 2020 Jul;296:110516. (PMID: 32539997)
      Plant Biotechnol J. 2017 Aug;15(8):953-969. (PMID: 28055148)
      Nat Protoc. 2010 Mar;5(3):457-72. (PMID: 20203663)
      Science. 2022 Mar 25;375(6587):eabg7985. (PMID: 35324310)
      Nat Commun. 2022 Nov 14;13(1):6940. (PMID: 36376315)
      Genome Biol. 2023 Jan 13;24(1):7. (PMID: 36639687)
      Nat Commun. 2022 Feb 11;13(1):826. (PMID: 35149708)
      Nature. 1992 Jan 16;355(6357):219-24. (PMID: 1731219)
      Mol Plant. 2022 Mar 7;15(3):504-519. (PMID: 35026438)
      Nat Methods. 2013 Dec;10(12):1213-8. (PMID: 24097267)
      Nat Plants. 2022 Aug;8(8):930-939. (PMID: 35851621)
      aBIOTECH. 2020 Jul 31;1(4):276-292. (PMID: 36304128)
      Mol Plant. 2023 Feb 6;16(2):318-321. (PMID: 36575798)
      Genome Biol. 2019 Jul 15;20(1):139. (PMID: 31307500)
      Mol Plant. 2023 Jan 2;16(1):260-278. (PMID: 36088536)
      Genome Biol. 2008;9(9):R137. (PMID: 18798982)
      Nat Methods. 2012 Mar 04;9(4):357-9. (PMID: 22388286)
      Annu Rev Plant Biol. 2014;65:553-78. (PMID: 24471834)
      PLoS Genet. 2022 Jan 13;18(1):e1009747. (PMID: 35025863)
      Nat Plants. 2015 Jan 26;1:14016. (PMID: 27246757)
      Nucleic Acids Res. 2018 Feb 16;46(3):e17. (PMID: 29165646)
      Plant Cell. 2018 Mar;30(3):563-581. (PMID: 29444813)
      Nat Genet. 2023 Jan;55(1):144-153. (PMID: 36581701)
      Science. 2018 Aug 17;361(6403):. (PMID: 30115783)
      Nat Plants. 2023 Jun;9(6):908-925. (PMID: 37142750)
      Nat Commun. 2019 Apr 12;10(1):1705. (PMID: 30979870)
      Methods Mol Biol. 2015;1223:189-98. (PMID: 25300841)
      Nature. 2013 Apr 4;496(7443):91-5. (PMID: 23535592)
      Sci China Life Sci. 2023 Apr;66(4):819-834. (PMID: 36417050)
      New Phytol. 2021 Jul;231(2):814-833. (PMID: 33837555)
      Front Plant Sci. 2022 Nov 16;13:1074873. (PMID: 36466281)
      New Phytol. 2022 Apr;234(2):494-512. (PMID: 35118670)
      Proc Natl Acad Sci U S A. 2012 Jan 31;109(5):1560-5. (PMID: 22238427)
      Planta. 2021 Jan 22;253(2):44. (PMID: 33481116)
      J Integr Plant Biol. 2019 Mar;61(3):296-309. (PMID: 30325110)
      Plant Biotechnol J. 2021 Jun;19(6):1141-1154. (PMID: 33368973)
      Nat Genet. 2010 Jun;42(6):545-9. (PMID: 20495564)
      Bioinformatics. 2009 Aug 15;25(16):2078-9. (PMID: 19505943)
      Nat Genet. 2010 Jun;42(6):541-4. (PMID: 20495565)
      Plant Cell. 2021 May 31;33(4):865-881. (PMID: 33594406)
      Annu Rev Genet. 2008;42:443-61. (PMID: 18983261)
      Plant Physiol. 2017 Oct;175(2):746-757. (PMID: 28807930)
      Development. 2017 Jun 1;144(11):1966-1975. (PMID: 28455375)
      Curr Opin Plant Biol. 2016 Dec;34:41-53. (PMID: 27614255)
      BMC Evol Biol. 2016 Jan 27;16:25. (PMID: 26817829)
      Sci Adv. 2021 Apr 28;7(18):. (PMID: 33910893)
      Mol Plant. 2023 Feb 6;16(2):393-414. (PMID: 36575796)
      Plant Cell. 2021 Dec 3;33(12):3621-3644. (PMID: 34726755)
      Science. 2018 Aug 17;361(6403):. (PMID: 30115782)
      Nat Rev Genet. 2020 Feb;21(2):71-87. (PMID: 31605096)
      Sci Rep. 2018 Oct 18;8(1):15338. (PMID: 30337587)
    • Contributed Indexing:
      Keywords: bread wheat; gene regulatory network; genetic variation; protein–protein interaction; spike traits
    • Publication Date:
      Date Created: 20240315 Date Completed: 20240514 Latest Revision: 20240526
    • Publication Date:
      20240526
    • Accession Number:
      PMC11121755
    • Accession Number:
      10.1016/j.xplc.2024.100879
    • Accession Number:
      38486454