Targeting cuproplasia and cuproptosis in cancer.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Author(s): Tang D;Tang D; Kroemer G; Kroemer G; Kroemer G; Kroemer G; Kang R; Kang R
  • Source:
    Nature reviews. Clinical oncology [Nat Rev Clin Oncol] 2024 May; Vol. 21 (5), pp. 370-388. Date of Electronic Publication: 2024 Mar 14.
  • Publication Type:
    Journal Article; Review; Research Support, Non-U.S. Gov't
  • Language:
    English
  • Additional Information
    • Source:
      Publisher: Nature Pub. Group Country of Publication: England NLM ID: 101500077 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1759-4782 (Electronic) Linking ISSN: 17594774 NLM ISO Abbreviation: Nat Rev Clin Oncol Subsets: MEDLINE
    • Publication Information:
      Original Publication: London : Nature Pub. Group
    • Subject Terms:
    • Abstract:
      Copper, an essential trace element that exists in oxidized and reduced forms, has pivotal roles in a variety of biological processes, including redox chemistry, enzymatic reactions, mitochondrial respiration, iron metabolism, autophagy and immune modulation; maintaining copper homeostasis is crucial as both its deficiency and its excess are deleterious. Dysregulated copper metabolism has a dual role in tumorigenesis and cancer therapy. Specifically, cuproplasia describes copper-dependent cell growth and proliferation, including hyperplasia, metaplasia and neoplasia, whereas cuproptosis refers to a mitochondrial pathway of cell death triggered by excessive copper exposure and subsequent proteotoxic stress (although complex interactions between cuproptosis and other cell death mechanisms, such as ferroptosis, are likely and remain enigmatic). In this Review, we summarize advances in our understanding of copper metabolism, the molecular machineries underlying cuproplasia and cuproptosis, and their potential targeting for cancer therapy. These new findings advance the rapidly expanding field of translational cancer research focused on metal compounds.
      (© 2024. Springer Nature Limited.)
    • References:
      Steensholt, G. On the effect of copper on cytochrome oxidase. Acta Physiol. Scand. 14, 335–339 (1947). (PMID: 1890185510.1111/j.1748-1716.1947.tb00468.x)
      Xue, Q. et al. Copper metabolism in cell death and autophagy. Autophagy 19, 2175–21951 (2023). (PMID: 370559351035147510.1080/15548627.2023.2200554)
      Danks, D. M., Cartwright, E., Stevens, B. J. & Townley, R. R. Menkes’ kinky hair disease: further definition of the defect in copper transport. Science 179, 1140–1142 (1973). (PMID: 412025910.1126/science.179.4078.1140)
      Cumings, J. N. The metabolism of copper and Wilson’s disease. Proc. Nutr. Soc. 21, 29–34 (1962). (PMID: 1388260710.1079/PNS19620007)
      Lovell, M. A., Robertson, J. D., Teesdale, W. J., Campbell, J. L. & Markesbery, W. R. Copper, iron and zinc in Alzheimer’s disease senile plaques. J. Neurol. Sci. 158, 47–52 (1998). (PMID: 966777710.1016/S0022-510X(98)00092-6)
      Rose, F., Hodak, M. & Bernholc, J. Mechanism of copper(II)-induced misfolding of Parkinson’s disease protein. Sci. Rep. 1, 11 (2011). (PMID: 22355530321649910.1038/srep00011)
      Heffern, M. C. et al. In vivo bioluminescence imaging reveals copper deficiency in a murine model of nonalcoholic fatty liver disease. Proc. Natl Acad. Sci. USA 113, 14219–14224 (2016). (PMID: 27911810516716510.1073/pnas.1613628113)
      Atari-Hajipirloo, S., Valizadeh, N., Khadem-Ansari, M. H., Rasmi, Y. & Kheradmand, F. Altered concentrations of copper, zinc, and iron are associated with increased levels of glycated hemoglobin in patients with type 2 diabetes mellitus and their first-degree relatives. Int. J. Endocrinol. Metab. 14, e33273 (2016). (PMID: 27761143505574810.5812/ijem.33273)
      Yang, H. et al. Obesity is associated with copper elevation in serum and tissues. Metallomics 11, 1363–1371 (2019). (PMID: 3124999710.1039/C9MT00148D)
      Leone, N., Courbon, D., Ducimetiere, P. & Zureik, M. Zinc, copper, and magnesium and risks for all-cause, cancer, and cardiovascular mortality. Epidemiology 17, 308–314 (2006). (PMID: 1657002810.1097/01.ede.0000209454.41466.b7)
      Shanbhag, V. C. et al. Copper metabolism as a unique vulnerability in cancer. Biochim. Biophys. Acta Mol. Cell Res. 1868, 118893 (2021). (PMID: 3309150710.1016/j.bbamcr.2020.118893)
      Ishida, S., Andreux, P., Poitry-Yamate, C., Auwerx, J. & Hanahan, D. Bioavailable copper modulates oxidative phosphorylation and growth of tumors. Proc. Natl Acad. Sci. USA 110, 19507–19512 (2013). (PMID: 24218578384513210.1073/pnas.1318431110)
      Tsvetkov, P. et al. Copper induces cell death by targeting lipoylated TCA cycle proteins. Science 375, 1254–1261 (2022). (PMID: 35298263927333310.1126/science.abf0529)
      Ge, E. J. et al. Connecting copper and cancer: from transition metal signalling to metalloplasia. Nat. Rev. Cancer 22, 102–113 (2022). (PMID: 3476445910.1038/s41568-021-00417-2)
      Tang, D., Chen, X. & Kroemer, G. Cuproptosis: a copper-triggered modality of mitochondrial cell death. Cell Res. 32, 417–418 (2022). (PMID: 35354936906179610.1038/s41422-022-00653-7)
      Guan, D., Zhao, L., Shi, X., Ma, X. & Chen, Z. Copper in cancer: from pathogenesis to therapy. Biomed. Pharmacother. 163, 114791 (2023). (PMID: 3710507110.1016/j.biopha.2023.114791)
      Yamaguchi-Iwai, Y. et al. Homeostatic regulation of copper uptake in yeast via direct binding of MAC1 protein to upstream regulatory sequences of FRE1 and CTR1. J. Biol. Chem. 272, 17711–17718 (1997). (PMID: 921192210.1074/jbc.272.28.17711)
      Rees, E. M., Lee, J. & Thiele, D. J. Mobilization of intracellular copper stores by the ctr2 vacuolar copper transporter. J. Biol. Chem. 279, 54221–54229 (2004). (PMID: 1549439010.1074/jbc.M411669200)
      Arredondo, M., Muñoz, P., Mura, C. V. & Nùñez, M. T. DMT1, a physiologically relevant apical Cu1 + transporter of intestinal cells. Am. J. Physiol. Cell Physiol. 284, 1525–1530 (2003). (PMID: 10.1152/ajpcell.00480.2002)
      Lin, C., Zhang, Z., Wang, T., Chen, C. & James Kang, Y. Copper uptake by DMT1: a compensatory mechanism for CTR1 deficiency in human umbilical vein endothelial cells. Metallomics 7, 1285–1289 (2015). (PMID: 2606757710.1039/c5mt00097a)
      Qi, Y. et al. Cuproptosis-related gene SLC31A1: prognosis values and potential biological functions in cancer. Sci. Rep. 13, 17790 (2023). (PMID: 378532101058484910.1038/s41598-023-44681-8)
      Porcu, C. et al. Copper/MYC/CTR1 interplay: a dangerous relationship in hepatocellular carcinoma. Oncotarget 9, 9325–9343 (2018). (PMID: 29507693582363510.18632/oncotarget.24282)
      Roberts, E. A. & Sarkar, B. Liver as a key organ in the supply, storage, and excretion of copper. Am. J. Clin. Nutr. 88, 851S–854S (2008). (PMID: 1877930710.1093/ajcn/88.3.851S)
      Hellman, N. E. & Gitlin, J. D. Ceruloplasmin metabolism and function. Annu. Rev. Nutr. 22, 439–458 (2002). (PMID: 1205535310.1146/annurev.nutr.22.012502.114457)
      Pan, Q. et al. Copper deficiency induced by tetrathiomolybdate suppresses tumor growth and angiogenesis. Cancer Res. 62, 4854–4859 (2002). (PMID: 12208730)
      Chidambaram, M. V., Barnes, G. & Frieden, E. Inhibition of ceruloplasmin and other copper oxidases by thiomolybdate. J. Inorg. Biochem. 22, 231–240 (1984). (PMID: 609764710.1016/0162-0134(84)85008-4)
      Zhang, B. et al. Cuproplasia characterization in colon cancer assists to predict prognosis and immunotherapeutic response. Front. Oncol. 13, 1061084 (2023). (PMID: 370071321006079210.3389/fonc.2023.1061084)
      Ryan, A., Nevitt, S. J., Tuohy, O. & Cook, P. Biomarkers for diagnosis of Wilson’s disease. Cochrane Database Syst. Rev. 2019, CD012267 (2019). (PMID: 317434306953362)
      Wong, P. C. et al. Copper chaperone for superoxide dismutase is essential to activate mammalian Cu/Zn superoxide dismutase. Proc. Natl Acad. Sci. USA 97, 2886–2891 (1999). (PMID: 10.1073/pnas.040461197)
      Wang, X. et al. SOD1 regulates ribosome biogenesis in KRAS mutant non-small cell lung cancer. Nat. Commun. 12, 2259 (2021). (PMID: 33859191805025910.1038/s41467-021-22480-x)
      Gomez, M. L., Shah, N., Kenny, T. C., Jenkins, E. C. Jr & Germain, D. SOD1 is essential for oncogene-driven mammary tumor formation but dispensable for normal development and proliferation. Oncogene 38, 5751–5765 (2019). (PMID: 31222103663913310.1038/s41388-019-0839-x)
      Glasauer, A., Sena, L. A., Diebold, L. P., Mazar, A. P. & Chandel, N. S. Targeting SOD1 reduces experimental non-small-cell lung cancer. J. Clin. Invest. 124, 117–128 (2014). (PMID: 2429271310.1172/JCI71714)
      Grasso, M. et al. The copper chaperone CCS facilitates copper binding to MEK1/2 to promote kinase activation. J. Biol. Chem. 297, 101314 (2021). (PMID: 34715128866102510.1016/j.jbc.2021.101314)
      McCubrey, J. A. et al. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation and drug resistance. Biochim. Biophys. Acta 1773, 1263–1284 (2007). (PMID: 1712642510.1016/j.bbamcr.2006.10.001)
      Stiburek, L., Vesela, K., Hansikova, H., Hulkova, H. & Zeman, J. Loss of function of Sco1 and its interaction with cytochrome c oxidase. Am. J. Physiol. Cell Physiol. 296, C1218–1226 (2009). (PMID: 1929517010.1152/ajpcell.00564.2008)
      Aich, A. et al. COX16 promotes COX2 metallation and assembly during respiratory complex IV biogenesis. eLife 7, e32572 (2018). (PMID: 29381136580914410.7554/eLife.32572)
      Pacheu-Grau, D. et al. Cooperation between COA6 and SCO2 in COX2 maturation during cytochrome c oxidase assembly links two mitochondrial cardiomyopathies. Cell Metab. 21, 823–833 (2015). (PMID: 2595967310.1016/j.cmet.2015.04.012)
      Hiser, L., Di Valentin, M., Hamer, A. G. & Hosler, J. P. Cox11p is required for stable formation of the Cu(B) and magnesium centers of cytochrome c oxidase. J. Biol. Chem. 275, 619–623 (2000). (PMID: 1061765910.1074/jbc.275.1.619)
      Zhang, M., Liao, X., Ji, G., Fan, X. & Wu, Q. High expression of COA6 is related to unfavorable prognosis and enhanced oxidative phosphorylation in lung adenocarcinoma. Int. J. Mol. Sci. 24, 5705 (2023). (PMID: 369827771005678310.3390/ijms24065705)
      Hamza, I., Faisst, A., Prohaska, J., Chen, Gruss, J. & Gitlin, J. D. The metallochaperone Atox1 plays a critical role in perinatal copper homeostasis. Proc. Natl Acad. Sci. USA 98, 6848–6852 (2001). (PMID: 113910063444110.1073/pnas.111058498)
      Zhang, X. et al. Memo1 binds reduced copper ions, interacts with copper chaperone Atox1, and protects against copper-mediated redox activity in vitro. Proc. Natl Acad. Sci. USA 119, e2006905119 (2022).
      Polishchuk, E. V. et al. Wilson disease protein ATP7B utilizes lysosomal exocytosis to maintain copper homeostasis. Dev. Cell 29, 686–700 (2014). (PMID: 24909901407038610.1016/j.devcel.2014.04.033)
      Setty, S. R. et al. Cell-specific ATP7A transport sustains copper-dependent tyrosinase activity in melanosomes. Nature 454, 1142–1146 (2008). (PMID: 1865080810.1038/nature07163)
      Blockhuys, S., Zhang, X. & Wittung-Stafshede, P. Single-cell tracking demonstrates copper chaperone Atox1 to be required for breast cancer cell migration. Proc. Natl Acad. Sci. USA 117, 2014–2019 (2020). (PMID: 31932435699500010.1073/pnas.1910722117)
      Jin, J. et al. Copper enhances genotoxic drug resistance via ATOX1 activated DNA damage repair. Cancer Lett. 536, 215651 (2022). (PMID: 3531534010.1016/j.canlet.2022.215651)
      Kim, Y. J. et al. Copper chaperone ATOX1 is required for MAPK signaling and growth in BRAF mutation-positive melanoma. Metallomics 11, 1430–1440 (2019). (PMID: 3131714310.1039/c9mt00042a)
      Li, Y. et al. Copper chaperone for superoxide dismutase promotes breast cancer cell proliferation and migration via ROS-mediated MAPK/ERK signaling. Front. Pharmacol. 10, 356 (2019). (PMID: 31024318646030510.3389/fphar.2019.00356)
      Feng, W., Ye, F., Xue, W., Zhou, Z. & Kang, Y. J. Copper regulation of hypoxia-inducible factor-1 activity. Mol. Pharmacol. 75, 174–182 (2009). (PMID: 1884283310.1124/mol.108.051516)
      Itoh, S. et al. Novel role of antioxidant-1 (Atox1) as a copper-dependent transcription factor involved in cell proliferation. J. Biol. Chem. 283, 9157–9167 (2008). (PMID: 18245776243103810.1074/jbc.M709463200)
      Inkol, J. M., Poon, A. C. & Mutsaers, A. J. Inhibition of copper chaperones sensitizes human and canine osteosarcoma cells to carboplatin chemotherapy. Vet. Comp. Oncol. 18, 559–569 (2020). (PMID: 3206098410.1111/vco.12579)
      Gudekar, N. et al. Metallothioneins regulate ATP7A trafficking and control cell viability during copper deficiency and excess. Sci. Rep. 10, 7856 (2020). (PMID: 32398691721791310.1038/s41598-020-64521-3)
      Fujie, T. et al. Induction of metallothionein isoforms by copper diethyldithiocarbamate in cultured vascular endothelial cells. J. Toxicol. Sci. 41, 225–232 (2016). (PMID: 2696160610.2131/jts.41.225)
      Lu, H. et al. Chemotherapy triggers HIF-1-dependent glutathione synthesis and copper chelation that induces the breast cancer stem cell phenotype. Proc. Natl Acad. Sci. USA 112, E4600–4609 (2015). (PMID: 26229077454723310.1073/pnas.1513433112)
      Harvey, C. J. et al. Nrf2-regulated glutathione recycling independent of biosynthesis is critical for cell survival during oxidative stress. Free Radic. Biol. Med. 46, 443–453 (2009). (PMID: 1902856510.1016/j.freeradbiomed.2008.10.040)
      Singh, A. et al. Dysfunctional KEAP1-NRF2 interaction in non-small-cell lung cancer. PLoS Med. 3, e420 (2006). (PMID: 17020408158441210.1371/journal.pmed.0030420)
      Sun, X. et al. Activation of the p62-Keap1-NRF2 pathway protects against ferroptosis in hepatocellular carcinoma cells. Hepatology 63, 173–184 (2016). (PMID: 2640364510.1002/hep.28251)
      Wang, X. J. et al. Nrf2 enhances resistance of cancer cells to chemotherapeutic drugs, the dark side of Nrf2. Carcinogenesis 29, 1235–1243 (2008). (PMID: 18413364331261210.1093/carcin/bgn095)
      La Fontaine, S. & Mercer, J. F. Trafficking of the copper-ATPases, ATP7A and ATP7B: role in copper homeostasis. Arch. Biochem. Biophys. 463, 149–167 (2007). (PMID: 1753118910.1016/j.abb.2007.04.021)
      Lutsenko, S., Barnes, N. L., Bartee, M. Y. & Dmitriev, O. Y. Function and regulation of human copper-transporting ATPases. Physiol. Rev. 87, 1011–1046 (2007). (PMID: 1761539510.1152/physrev.00004.2006)
      Dierick, H. A., Ambrosini, L., Spencer, J., Glover, T. W. & Mercer, J. F. Molecular structure of the Menkes disease gene (ATP7A). Genomics 28, 462–469 (1995). (PMID: 749008110.1006/geno.1995.1175)
      DiDonato, M., Narindrasorasak, S., Forbes, J. R., Cox, D. W. & Sarkar, B. Expression, purification, and metal binding properties of the N-terminal domain from the Wilson disease putative copper-transporting ATPase (ATP7B). J. Biol. Chem. 272, 33279–33282 (1997). (PMID: 940711810.1074/jbc.272.52.33279)
      Petris, M. J. & Mercer, J. F. The Menkes protein (ATP7A; MNK) cycles via the plasma membrane both in basal and elevated extracellular copper using a C-terminal di-leucine endocytic signal. Hum. Mol. Genet. 8, 2107–2115 (1999). (PMID: 1048478110.1093/hmg/8.11.2107)
      Yang, G. M. et al. Structures of the human Wilson disease copper transporter ATP7B. Cell Rep. 42, 112417 (2023). (PMID: 3707491310.1016/j.celrep.2023.112417)
      Lutsenko, S. Dynamic and cell-specific transport networks for intracellular copper ions. J. Cell Sci. 134, jcs240523 (2021). (PMID: 34734631862755810.1242/jcs.240523)
      Aubert, L. et al. Copper bioavailability is a KRAS-specific vulnerability in colorectal cancer. Nat. Commun. 11, 3701 (2020). (PMID: 32709883738161210.1038/s41467-020-17549-y)
      Petruzzelli, R. et al. TFEB regulates ATP7B expression to promote platinum chemoresistance in human ovarian cancer cells. Cells 11, 219 (2022). (PMID: 35053335877408810.3390/cells11020219)
      Lukanovic, D., Herzog, M., Kobal, B. & Cerne, K. The contribution of copper efflux transporters ATP7A and ATP7B to chemoresistance and personalized medicine in ovarian cancer. Biomed. Pharmacother. 129, 110401 (2020). (PMID: 3257011610.1016/j.biopha.2020.110401)
      Janardhanan, P., Somasundaran, A. K., Balakrishnan, A. J. & Pilankatta, R. Sensitization of cancer cells towards cisplatin and carboplatin by protein kinase D inhibitors through modulation of ATP7A/B (copper transport ATPases). Cancer Treat. Res. Commun. 32, 100613 (2022). (PMID: 3590841010.1016/j.ctarc.2022.100613)
      Kong, F. S. et al. Systematic pan-cancer analysis identifies SLC31A1 as a biomarker in multiple tumor types. BMC Med. Genomics 16, 61 (2023). (PMID: 369737861004174210.1186/s12920-023-01489-9)
      Skrajnowska, D. et al. Copper and resveratrol attenuates serum catalase, glutathione peroxidase, and element values in rats with DMBA-induced mammary carcinogenesis. Biol. Trace Elem. Res. 156, 271–278 (2013). (PMID: 24213724384414610.1007/s12011-013-9854-x)
      Xu, R. et al. Hepatocellular carcinoma associated with an atypical presentation of Wilson’s disease. Semin. Liver Dis. 27, 122–127 (2007). (PMID: 1729518110.1055/s-2007-967203)
      Reyes, C. V. Hepatocellular carcinoma in Wilson disease-related liver cirrhosis. Gastroenterol. Hepatol. 4, 435–437 (2008).
      Masaki, T. et al. Hepatocellular carcinoma cell cycle: study of Long-Evans cinnamon rats. Hepatology 32, 711–720 (2000). (PMID: 1100361410.1053/jhep.2000.17705)
      Terada, K. & Sugiyama, T. The Long-Evans cinnamon rat: an animal model for Wilson’s disease. Pediatr. Int. 41, 414–418 (1999). (PMID: 1045319710.1046/j.1442-200x.1999.01089.x)
      Jong-Hon, K., Togashi, Y., Kasai, H., Hosokawa, M. & Takeichi, N. Prevention of spontaneous hepatocellular carcinoma in Long-Evans cinnamon rats with hereditary hepatitis by the administration of D-penicillamine. Hepatology 18, 614–620 (1993). (PMID: 8395459)
      Formigari, A., Gregianin, E. & Irato, P. The effect of zinc and the role of p53 in copper-induced cellular stress responses. J. Appl. Toxicol. 33, 527–536 (2013). (PMID: 2340118210.1002/jat.2854)
      Hussain, S. P. et al. Increased p53 mutation load in nontumorous human liver of Wilson disease and hemochromatosis: oxyradical overload diseases. Proc. Natl Acad. Sci. USA 97, 12770–12775 (2000). (PMID: 110501621883910.1073/pnas.220416097)
      Arnesano, F. et al. Copper-triggered aggregation of ubiquitin. PLoS ONE 4, e7052 (2009). (PMID: 19756145273763510.1371/journal.pone.0007052)
      Opazo, C. M. et al. Copper signaling promotes proteostasis and animal development via allosteric activation of ubiquitin E2D conjugases. Preprint at bioRxiv https://doi.org/10.1101/2021.02.15.431211 (2021).
      Santoro, A. M. et al. Copper(II) ions affect the gating dynamics of the 20S proteasome: a molecular and in cell study. Sci. Rep. 6, 33444 (2016). (PMID: 27633879502578010.1038/srep33444)
      Xiao, Y. et al. Molecular study on copper-mediated tumor proteasome inhibition and cell death. Int. J. Oncol. 37, 81–87 (2010). (PMID: 20514399)
      Zhang, H., Wu, J. S. & Peng, F. Potent anticancer activity of pyrrolidine dithiocarbamate-copper complex against cisplatin-resistant neuroblastoma cells. Anticancer. Drugs 19, 125–132 (2008). (PMID: 1817610810.1097/CAD.0b013e3282f2bdff)
      Chen, X., Dou, Q. P., Liu, J. & Tang, D. Targeting ubiquitin-proteasome system with copper complexes for cancer therapy. Front. Mol. Biosci. 8, 649151 (2021). (PMID: 33928122807678910.3389/fmolb.2021.649151)
      Turski, M. L. et al. A novel role for copper in Ras/mitogen-activated protein kinase signaling. Mol. Cell Biol. 32, 1284–1295 (2012). (PMID: 22290441330244910.1128/MCB.05722-11)
      Guo, J. et al. Copper promotes tumorigenesis by activating the PDK1-AKT oncogenic pathway in a copper transporter 1 dependent manner. Adv. Sci. 8, e2004303 (2021). (PMID: 10.1002/advs.202004303)
      Tsang, T. et al. Copper is an essential regulator of the autophagic kinases ULK1/2 to drive lung adenocarcinoma. Nat. Cell Biol. 22, 412–424 (2020). (PMID: 32203415761025810.1038/s41556-020-0481-4)
      Chen, L. et al. APEX2-based proximity labeling of Atox1 identifies CRIP2 as a nuclear copper-binding protein that regulates autophagy activation. Angew. Chem. Int. Ed. Engl. 60, 25346–25355 (2021). (PMID: 3455063210.1002/anie.202108961)
      Polishchuk, E. V. et al. Activation of autophagy, observed in liver tissues from patients with Wilson disease and from ATP7B-deficient animals, protects hepatocytes from copper-induced apoptosis. Gastroenterology 156, 1173–1189.e5 (2019). (PMID: 3045292210.1053/j.gastro.2018.11.032)
      Persichini, T. et al. Copper activates the NF-κB pathway in vivo. Antioxid. Redox Signal. 8, 1897–1904 (2006). (PMID: 1698704210.1089/ars.2006.8.1897)
      McElwee, M. K., Song, M. O. & Freedman, J. H. Copper activation of NF-κB signaling in HepG2 cells. J. Mol. Biol. 393, 1013–1021 (2009). (PMID: 19747488278243310.1016/j.jmb.2009.08.077)
      Rigiracciolo, D. C. et al. Copper activates HIF-1α/GPER/VEGF signalling in cancer cells. Oncotarget 6, 34158–34177 (2015). (PMID: 26415222474144310.18632/oncotarget.5779)
      Liao, Y. et al. Inflammation mobilizes copper metabolism to promote colon tumorigenesis via an IL-17-STEAP4-XIAP axis. Nat. Commun. 11, 900 (2020). (PMID: 32060280702168510.1038/s41467-020-14698-y)
      Barker, H. E. et al. LOXL2-mediated matrix remodeling in metastasis and mammary gland involution. Cancer Res. 71, 1561–1572 (2011). (PMID: 2123333610.1158/0008-5472.CAN-10-2868)
      Shanbhag, V. et al. ATP7A delivers copper to the lysyl oxidase family of enzymes and promotes tumorigenesis and metastasis. Proc. Natl Acad. Sci. USA 116, 6836–6841 (2019). (PMID: 30890638645274410.1073/pnas.1817473116)
      Chen, X. et al. LOX upregulates FAK phosphorylation to promote metastasis in osteosarcoma. Genes Dis. 10, 254–266 (2023). (PMID: 3701305610.1016/j.gendis.2021.12.016)
      Solier, S. et al. A druggable copper-signalling pathway that drives inflammation. Nature 617, 386–394 (2023). (PMID: 371009121013155710.1038/s41586-023-06017-4)
      Vitale, I., Manic, G., Coussens, L. M., Kroemer, G. & Galluzzi, L. Macrophages and metabolism in the tumor microenvironment. Cell Metab. 30, 36–50 (2019). (PMID: 3126942810.1016/j.cmet.2019.06.001)
      Voli, F. et al. Intratumoral copper modulates PD-L1 expression and influences tumor immune evasion. Cancer Res. 80, 4129–4144 (2020). (PMID: 3281686010.1158/0008-5472.CAN-20-0471)
      Tan, H. Y. et al. Lysyl oxidase-like 4 fosters an immunosuppressive microenvironment during hepatocarcinogenesis. Hepatology 73, 2326–2341 (2021). (PMID: 3306846110.1002/hep.31600)
      Tsvetkov, P. et al. Mitochondrial metabolism promotes adaptation to proteotoxic stress. Nat. Chem. Biol. 15, 681–689 (2019). (PMID: 31133756818360010.1038/s41589-019-0291-9)
      Dreishpoon, M. B. et al. FDX1 regulates cellular protein lipoylation through direct binding to LIAS. J. Biol. Chem. 299, 105046 (2023). (PMID: 374536611046284110.1016/j.jbc.2023.105046)
      Schulz, V. et al. Functional spectrum and specificity of mitochondrial ferredoxins FDX1 and FDX2. Nat. Chem. Biol. 19, 206–217 (2023). (PMID: 3628079510.1038/s41589-022-01159-4)
      Ran, X. M. et al. The effect of cuproptosis-relevant genes on the immune infiltration and metabolism of gynecological oncology by multiply analysis and experiments validation. Sci. Rep. 13, 19474 (2023). (PMID: 379456101063610310.1038/s41598-023-45076-5)
      Ni, M. et al. Functional assessment of lipoyltransferase-1 deficiency in cells, mice, and humans. Cell Rep. 27, 1376–1386.e6 (2019). (PMID: 31042466735131310.1016/j.celrep.2019.04.005)
      Gale, J. R., Hartnett-Scott, K., Ross, M. M., Rosenberg, P. A. & Aizenman, E. Copper induces neuron-sparing, ferredoxin 1-independent astrocyte toxicity mediated by oxidative stress. J. Neurochem. 167, 277–295 (2023). (PMID: 3770210910.1111/jnc.15961)
      Zulkifli, M. et al. FDX1-dependent and independent mechanisms of elesclomol-mediated intracellular copper delivery. Proc. Natl Acad. Sci. USA 120, e2216722120 (2023). (PMID: 368485561001384710.1073/pnas.2216722120)
      Yang, W. et al. 4-Octyl itaconate inhibits aerobic glycolysis by targeting GAPDH to promote cuproptosis in colorectal cancer. Biomed. Pharmacother. 159, 114301 (2023). (PMID: 3670663410.1016/j.biopha.2023.114301)
      Li, Z. et al. MELK promotes HCC carcinogenesis through modulating cuproptosis-related gene DLAT-mediated mitochondrial function. Cell Death Dis. 14, 733 (2023). (PMID: 379498771063839410.1038/s41419-023-06264-3)
      Liu, J., Liu, Y., Wang, Y., Kang, R. & Tang, D. HMGB1 is a mediator of cuproptosis-related sterile inflammation. Front. Cell Dev. Biol. 10, 996307 (2022). (PMID: 36211458953448010.3389/fcell.2022.996307)
      Zhong, X. Y. et al. CARM1 methylates GAPDH to regulate glucose metabolism and is suppressed in liver cancer. Cell Rep. 24, 3207–3223 (2018). (PMID: 3023200310.1016/j.celrep.2018.08.066)
      Wang, Y. et al. Metabolic regulation of misfolded protein import into mitochondria. Preprint at bioRxiv https://doi.org/10.1101/2023.03.29.534670 (2023).
      Zhang, T. et al. Metabolic orchestration of cell death by AMPK-mediated phosphorylation of RIPK1. Science 380, 1372–1380 (2023). (PMID: 373847041061701810.1126/science.abn1725)
      Sun, L. et al. Lactylation of METTL16 promotes cuproptosis via m(6)A-modification on FDX1 mRNA in gastric cancer. Nat. Commun. 14, 6523 (2023). (PMID: 378638891058926510.1038/s41467-023-42025-8)
      Tang, D., Kang, R., Berghe, T. V., Vandenabeele, P. & Kroemer, G. The molecular machinery of regulated cell death. Cell Res. 29, 347–364 (2019). (PMID: 30948788679684510.1038/s41422-019-0164-5)
      Mi, J. et al. Elucidating cuproptosis-related gene SLC31A1 diagnostic and prognostic values in cancer. Am. J. Transl. Res. 15, 6026–6041 (2023). (PMID: 3796919110641336)
      Wang, J. et al. Cuproptosis-related gene SLC31A1 expression correlates with the prognosis and tumor immune microenvironment in glioma. Funct. Integr. Genomics 23, 279 (2023). (PMID: 376106681044760310.1007/s10142-023-01210-0)
      Wu, J. H. et al. Identification of cuproptosis-related gene SLC31A1 and upstream LncRNA-miRNA regulatory axis in breast cancer. Sci. Rep. 13, 18390 (2023). (PMID: 378846501060316110.1038/s41598-023-45761-5)
      Quan, Y. et al. Tumor cuproptosis and immune infiltration improve survival of patients with hepatocellular carcinoma with a high expression of ferredoxin 1. Front. Oncol. 13, 1168769 (2023). (PMID: 373615951028540110.3389/fonc.2023.1168769)
      Zhang, P. et al. DLAT is a promising prognostic marker and therapeutic target for hepatocellular carcinoma: a comprehensive study based on public databases. Sci. Rep. 13, 17295 (2023). (PMID: 378280991057029010.1038/s41598-023-43835-y)
      Huang, S. et al. Cuproptosis-related gene DLAT serves as a prognostic biomarker for immunotherapy in clear cell renal cell carcinoma: multi-database and experimental verification. Aging 15, 12314–12329 (2023). (PMID: 379381551068362810.18632/aging.205181)
      Jiang, H., Chen, H., Wang, Y. & Qian, Y. Novel molecular subtyping scheme based on in silico analysis of cuproptosis regulator gene patterns optimizes survival prediction and treatment of hepatocellular carcinoma. J. Clin. Med. 12, 5767 (2023). (PMID: 377627101053178810.3390/jcm12185767)
      Wang, K. et al. Multi-omics analysis defines a cuproptosis-related prognostic model for ovarian cancer: implication of WASF2 in cuproptosis resistance. Life Sci. 332, 122081 (2023). (PMID: 3771762110.1016/j.lfs.2023.122081)
      Yoshida, D., Ikeda, Y. & Nakazawa, S. Suppression of tumor growth in experimental 9L gliosarcoma model by copper depletion. Neurol. Med. Chir. 35, 133–135 (1995). (PMID: 10.2176/nmc.35.133)
      Crowe, A., Jackaman, C., Beddoes, K. M., Ricciardo, B. & Nelson, D. J. Rapid copper acquisition by developing murine mesothelioma: decreasing bioavailable copper slows tumor growth, normalizes vessels and promotes T cell infiltration. PLoS ONE 8, e73684 (2013). (PMID: 24013775375493410.1371/journal.pone.0073684)
      Sciegienka, S. J. et al. D-penicillamine combined with inhibitors of hydroperoxide metabolism enhances lung and breast cancer cell responses to radiation and carboplatin via H 2 O 2 -mediated oxidative stress. Free Radic. Biol. Med. 108, 354–361 (2017). (PMID: 28389407549554410.1016/j.freeradbiomed.2017.04.001)
      Brem, S. et al. Phase 2 trial of copper depletion and penicillamine as antiangiogenesis therapy of glioblastoma. Neuro Oncol. 7, 246–253 (2005). (PMID: 16053699187191710.1215/S1152851704000869)
      Brady, D. C. et al. Copper is required for oncogenic BRAF signalling and tumorigenesis. Nature 509, 492–496 (2014). (PMID: 24717435413897510.1038/nature13180)
      Castoldi, F. et al. Chemical activation of SAT1 corrects diet-induced metabolic syndrome. Cell Death Differ. 27, 2904–2920 (2020). (PMID: 32376874749477610.1038/s41418-020-0550-z)
      Fu, S., Naing, A., Fu, C., Kuo, M. T. & Kurzrock, R. Overcoming platinum resistance through the use of a copper-lowering agent. Mol. Cancer Ther. 11, 1221–1225 (2012). (PMID: 22491798366759610.1158/1535-7163.MCT-11-0864)
      Huang, Y. F. et al. A dose escalation study of trientine plus carboplatin and pegylated liposomal doxorubicin in women with a first relapse of epithelial ovarian, tubal, and peritoneal cancer within 12 months after platinum-based chemotherapy. Front. Oncol. 9, 437 (2019). (PMID: 31179244654408110.3389/fonc.2019.00437)
      Lin, J. et al. A non-comparative randomized phase II study of 2 doses of ATN-224, a copper/zinc superoxide dismutase inhibitor, in patients with biochemically recurrent hormone-naive prostate cancer. Urol. Oncol. 31, 581–588 (2013). (PMID: 2181664010.1016/j.urolonc.2011.04.009)
      Lowndes, S. A. et al. Phase I study of copper-binding agent ATN-224 in patients with advanced solid tumors. Clin. Cancer Res. 14, 7526–7534 (2008). (PMID: 1901087110.1158/1078-0432.CCR-08-0315)
      Brewer, G. J. et al. Treatment of metastatic cancer with tetrathiomolybdate, an anticopper, antiangiogenic agent: phase I study. Clin. Cancer Res. 6, 1–10 (2000). (PMID: 10656425)
      Henry, N. L. et al. Phase II trial of copper depletion with tetrathiomolybdate as an antiangiogenesis strategy in patients with hormone-refractory prostate cancer. Oncology 71, 168–175 (2006). (PMID: 1764153510.1159/000106066)
      Redman, B. G. et al. Phase II trial of tetrathiomolybdate in patients with advanced kidney cancer. Clin. Cancer Res. 9, 1666–1672 (2003). (PMID: 12738719)
      Chan, N. et al. Influencing the tumor microenvironment: a phase II study of copper depletion using tetrathiomolybdate in patients with breast cancer at high risk for recurrence and in preclinical models of lung metastases. Clin. Cancer Res. 23, 666–676 (2017). (PMID: 2776998810.1158/1078-0432.CCR-16-1326)
      Blum Murphy, M. et al. Pathological complete response in patients with esophageal cancer after the trimodality approach: the association with baseline variables and survival — The University of Texas MD Anderson Cancer Center experience. Cancer 123, 4106–4113 (2017). (PMID: 2888571210.1002/cncr.30953)
      Ramchandani, D. et al. Copper depletion modulates mitochondrial oxidative phosphorylation to impair triple negative breast cancer metastasis. Nat. Commun. 12, 7311 (2021). (PMID: 34911956867426010.1038/s41467-021-27559-z)
      Kim, K. K., Lange, T. S., Singh, R. K., Brard, L. & Moore, R. G. Tetrathiomolybdate sensitizes ovarian cancer cells to anticancer drugs doxorubicin, fenretinide, 5-fluorouracil and mitomycin C. BMC Cancer 12, 147 (2012). (PMID: 22502731335324610.1186/1471-2407-12-147)
      Gartner, E. M. et al. A pilot trial of the anti-angiogenic copper lowering agent tetrathiomolybdate in combination with irinotecan, 5-flurouracil, and leucovorin for metastatic colorectal cancer. Invest. New Drugs 27, 159–165 (2009). (PMID: 1871250210.1007/s10637-008-9165-9)
      Ishida, S., McCormick, F., Smith-McCune, K. & Hanahan, D. Enhancing tumor-specific uptake of the anticancer drug cisplatin with a copper chelator. Cancer Cell 17, 574–583 (2010). (PMID: 20541702290236910.1016/j.ccr.2010.04.011)
      Cui, H. et al. Copper transporter 1 in human colorectal cancer cell lines: effects of endogenous and modified expression on oxaliplatin cytotoxicity. J. Inorg. Biochem. 177, 249–258 (2017). (PMID: 2855116010.1016/j.jinorgbio.2017.04.022)
      Finney, L., Vogt, S., Fukai, T. & Glesne, D. Copper and angiogenesis: unravelling a relationship key to cancer progression. Clin. Exp. Pharmacol. Physiol. 36, 88–94 (2009). (PMID: 1850543910.1111/j.1440-1681.2008.04969.x)
      Liu, Y. L. et al. Tetrathiomolybdate (TM)-associated copper depletion influences collagen remodeling and immune response in the pre-metastatic niche of breast cancer. NPJ Breast Cancer 7, 108 (2021). (PMID: 34426581838270110.1038/s41523-021-00313-w)
      Skrott, Z. et al. Alcohol-abuse drug disulfiram targets cancer via p97 segregase adaptor NPL4. Nature 552, 194–199 (2017). (PMID: 29211715573049910.1038/nature25016)
      Budman, D. R. & Calabro, A. In vitro search for synergy and antagonism: evaluation of docetaxel combinations in breast cancer cell lines. Breast Cancer Res. Treat. 74, 41–46 (2002). (PMID: 1215045110.1023/A:1016070230538)
      O’Brien, A., Barber, J. E., Reid, S., Niknejad, N. & Dimitroulakos, J. Enhancement of cisplatin cytotoxicity by disulfiram involves activating transcription factor 3. Anticancer. Res. 32, 2679–2688 (2012). (PMID: 22753726)
      Nechushtan, H. et al. A phase IIb trial assessing the addition of disulfiram to chemotherapy for the treatment of metastatic non-small cell lung cancer. Oncologist 20, 366–367 (2015). (PMID: 25777347439177010.1634/theoncologist.2014-0424)
      Mego, M. et al. Phase II study of disulfiram and cisplatin in refractory germ cell tumors. The GCT-SK-006 phase II trial. Invest. New Drugs 40, 1080–1086 (2022). (PMID: 3576317810.1007/s10637-022-01271-1)
      Kelley, K. C. et al. A Phase 1 dose-escalation study of disulfiram and copper gluconate in patients with advanced solid tumors involving the liver using S-glutathionylation as a biomarker. BMC Cancer 21, 510 (2021). (PMID: 33957901810375210.1186/s12885-021-08242-4)
      Ni, X. et al. Overcoming the compensatory increase in NRF2 induced by NPL4 inhibition enhances disulfiram/copper-induced oxidative stress and ferroptosis in renal cell carcinoma. Eur. J. Pharmacol. 960, 176110 (2023). (PMID: 3783810410.1016/j.ejphar.2023.176110)
      Chu, M. et al. Disulfiram/copper induce ferroptosis in triple-negative breast cancer cell line MDA-MB-231. Front. Biosci. 28, 186 (2023). (PMID: 10.31083/j.fbl2808186)
      Yang, Y. et al. Disulfiram chelated with copper promotes apoptosis in human breast cancer cells by impairing the mitochondria functions. Scanning 38, 825–836 (2016). (PMID: 2735366110.1002/sca.21332)
      Gan, Y. et al. Drug repositioning of disulfiram induces endometrioid epithelial ovarian cancer cell death via the both apoptosis and cuproptosis pathways. Oncol. Res. 31, 333–343 (2023). (PMID: 373053831022930510.32604/or.2023.028694)
      Zheng, X. et al. Disulfiram improves the anti-PD-1 therapy efficacy by regulating PD-L1 expression via epigenetically reactivation of IRF7 in triple negative breast cancer. Front. Oncol. 11, 734853 (2021). (PMID: 34858816863135910.3389/fonc.2021.734853)
      Rae, C. et al. The role of copper in disulfiram-induced toxicity and radiosensitization of cancer cells. J. Nucl. Med. 54, 953–960 (2013). (PMID: 2361658210.2967/jnumed.112.113324)
      Wang, Y. et al. Stressed target cancer cells drive nongenetic reprogramming of CAR T cells and solid tumor microenvironment. Nat. Commun. 14, 5727 (2023). (PMID: 377148301050425910.1038/s41467-023-41282-x)
      Wu, L. et al. Disulfiram and BKM120 in combination with chemotherapy impede tumor progression and delay tumor recurrence in tumor initiating cell-rich TNBC. Sci. Rep. 9, 236 (2019). (PMID: 30659204633874410.1038/s41598-018-35619-6)
      Liu, P. et al. Disulfiram targets cancer stem-like cells and reverses resistance and cross-resistance in acquired paclitaxel-resistant triple-negative breast cancer cells. Br. J. Cancer 109, 1876–1885 (2013). (PMID: 24008666379018410.1038/bjc.2013.534)
      Huang, J. et al. A multicenter phase II study of temozolomide plus disulfiram and copper for recurrent temozolomide-resistant glioblastoma. J. Neurooncol. 142, 537–544 (2019). (PMID: 3077120010.1007/s11060-019-03125-y)
      Werlenius, K. et al. Effect of disulfiram and copper plus chemotherapy vs chemotherapy alone on survival in patients with recurrent glioblastoma: a randomized clinical trial. JAMA Netw. Open 6, e234149 (2023). (PMID: 370004521006646010.1001/jamanetworkopen.2023.4149)
      Gao, W. et al. Elesclomol induces copper-dependent ferroptosis in colorectal cancer cells via degradation of ATP7A. Mol. Oncol. 15, 3527–3544 (2021). (PMID: 34390123863755410.1002/1878-0261.13079)
      Kirshner, J. R. et al. Elesclomol induces cancer cell apoptosis through oxidative stress. Mol. Cancer Ther. 7, 2319–2327 (2008). (PMID: 1872347910.1158/1535-7163.MCT-08-0298)
      O’Day, S. et al. Phase II, randomized, controlled, double-blinded trial of weekly elesclomol plus paclitaxel versus paclitaxel alone for stage IV metastatic melanoma. J. Clin. Oncol. 27, 5452–5458 (2009). (PMID: 1982613510.1200/JCO.2008.17.1579)
      O’Day, S. J. et al. Final results of phase III SYMMETRY study: randomized, double-blind trial of elesclomol plus paclitaxel versus paclitaxel alone as treatment for chemotherapy-naive patients with advanced melanoma. J. Clin. Oncol. 31, 1211–1218 (2013). (PMID: 2340144710.1200/JCO.2012.44.5585)
      Monk, B. J. et al. A phase II evaluation of elesclomol sodium and weekly paclitaxel in the treatment of recurrent or persistent platinum-resistant ovarian, fallopian tube or primary peritoneal cancer: an NRG oncology/gynecologic oncology group study. Gynecol. Oncol. 151, 422–427 (2018). (PMID: 30309721639207610.1016/j.ygyno.2018.10.001)
      Nakae, K., Yamamoto, S., Shigematsu, I. & Kono, R. Relation between subacute myelo-optic neuropathy (S.M.O.N.) and clioquinol: nationwide survey. Lancet 1, 171–173 (1973). (PMID: 411879310.1016/S0140-6736(73)90004-4)
      Shen, Z. et al. Exploration of a screening model for intrahepatic cholangiocarcinoma patients prone to cuproptosis and mechanisms of the susceptibility of CD274-knockdown intrahepatic cholangiocarcinoma cells to cuproptosis. Cancer Gene. Ther. 30, 1663–1678 (2023). (PMID: 3782810510.1038/s41417-023-00673-4)
      Ruan, Y. et al. Engineered microbial nanohybrids for tumor-mediated NIR II photothermal enhanced ferroptosis/cuproptosis and immunotherapy. Adv. Healthc. Mater. 13, e2302537 (2023). (PMID: 3774232210.1002/adhm.202302537)
      Dong, Y. et al. Mitochondria-targeting Cu 3 VS 4 nanostructure with high copper ionic mobility for photothermoelectric therapy. Sci. Adv. 9, eadi9980 (2023). (PMID: 379106081061993510.1126/sciadv.adi9980)
      Wang, X. et al. Adrenomedullin/FOXO3 enhances sunitinib resistance in clear cell renal cell carcinoma by inhibiting FDX1 expression and cuproptosis. FASEB J. 37, e23143 (2023). (PMID: 3769835310.1096/fj.202300474R)
      Wen, H. et al. Cuproptosis enhances docetaxel chemosensitivity by inhibiting autophagy via the DLAT/mTOR pathway in prostate cancer. FASEB J. 37, e23145 (2023). (PMID: 3758465410.1096/fj.202300980R)
      Liu, G. et al. Prognosis, immune microenvironment infiltration and immunotherapy response in clear cell renal cell carcinoma based on cuproptosis-related immune checkpoint gene signature. J. Cancer 14, 3335–3350 (2023). (PMID: 379284261062298410.7150/jca.88467)
      Xing, T. et al. Targeting the TCA cycle through cuproptosis confers synthetic lethality on ARID1A-deficient hepatocellular carcinoma. Cell Rep. Med. 4, 101264 (2023). (PMID: 379397121069462410.1016/j.xcrm.2023.101264)
      Chen, S. J. et al. Mechanistic basis of a combination D-penicillamine and platinum drugs synergistically inhibits tumor growth in oxaliplatin-resistant human cervical cancer cells in vitro and in vivo. Biochem. Pharmacol. 95, 28–37 (2015). (PMID: 2580100710.1016/j.bcp.2015.03.006)
      Alli, E. & Ford, J. M. Breast cancers with compromised DNA repair exhibit selective sensitivity to elesclomol. DNA Repair 11, 522–524 (2012). (PMID: 2242534810.1016/j.dnarep.2012.02.003)
      Li, Y. et al. Copper ionophore elesclomol selectively targets GNAQ/11-mutant uveal melanoma. Oncogene 41, 3539–3553 (2022). (PMID: 3569780310.1038/s41388-022-02364-0)
      Nagai, M. et al. The oncology drug elesclomol selectively transports copper to the mitochondria to induce oxidative stress in cancer cells. Free Radic. Biol. Med. 52, 2142–2150 (2012). (PMID: 2254244310.1016/j.freeradbiomed.2012.03.017)
      Pham, V. N. & Chang, C. J. Metalloallostery and transition metal signaling: bioinorganic copper chemistry beyond active sites. Angew. Chem. Int. Ed. Engl. 62, e202213644 (2023). (PMID: 366537241075420510.1002/anie.202213644)
      Zischka, H. et al. Liver mitochondrial membrane crosslinking and destruction in a rat model of Wilson disease. J. Clin. Invest. 121, 1508–1518 (2011). (PMID: 21364284306897910.1172/JCI45401)
      Joshi, P. R., Sadre, S., Guo, X. A., McCoy, J. G. & Mootha, V. K. Lipoylation is dependent on the ferredoxin FDX1 and dispensable under hypoxia in human cells. J. Biol. Chem. 299, 105075 (2023). (PMID: 374812091047000910.1016/j.jbc.2023.105075)
      Dixon, S. J. et al. Ferroptosis: an iron-dependent form of nonapoptotic cell death. Cell 149, 1060–1072 (2012). (PMID: 22632970336738610.1016/j.cell.2012.03.042)
      Xie, Y., Kang, R., Klionsky, D. J. & Tang, D. GPX4 in cell death, autophagy, and disease. Autophagy 19, 2621–2638 (2023). (PMID: 372720581047288810.1080/15548627.2023.2218764)
      Dai, E. A guideline on the molecular ecosystem regulating ferroptosis. Nat. Cell Biol., https://doi.org/10.1038/s41556-024-01360-8 (2024).
      Chen, X., Kang, R., Kroemer, G. & Tang, D. Broadening horizons: the role of ferroptosis in cancer. Nat. Rev. Clin. Oncol. 18, 280–296 (2021). (PMID: 3351491010.1038/s41571-020-00462-0)
      Williams, D. M., Loukopoulos, D., Lee, G. R. & Cartwright, G. E. Role of copper in mitochondrial iron metabolism. Blood 48, 77–85 (1976). (PMID: 94740610.1182/blood.V48.1.77.77)
      Tselepis, C. et al. Characterization of the transition-metal-binding properties of hepcidin. Biochem J. 427, 289–296 (2010). (PMID: 2011331410.1042/BJ20091521)
      Li, Y. et al. Disulfiram/copper induces antitumor activity against both nasopharyngeal cancer cells and cancer-associated fibroblasts through ROS/MAPK and ferroptosis pathways. Cancers 12, 138 (2020). (PMID: 31935835701700510.3390/cancers12010138)
      Garza, N. M., Zulkifli, M. & Gohil, V. M. Elesclomol elevates cellular and mitochondrial iron levels by delivering copper to the iron import machinery. J. Biol. Chem. 298, 102139 (2022). (PMID: 35714767927025210.1016/j.jbc.2022.102139)
      Qian, X. et al. Copper-dependent autophagic degradation of GPX4 drives ferroptosis. Autophagy 19, 1982–1996 (2022).
      Ren, X. et al. Overcoming the compensatory elevation of NRF2 renders hepatocellular carcinoma cells more vulnerable to disulfiram/copper-induced ferroptosis. Redox Biol. 46, 102122 (2021). (PMID: 34482117841696110.1016/j.redox.2021.102122)
    • Accession Number:
      789U1901C5 (Copper)
    • Publication Date:
      Date Created: 20240315 Date Completed: 20240424 Latest Revision: 20240503
    • Publication Date:
      20240504
    • Accession Number:
      10.1038/s41571-024-00876-0
    • Accession Number:
      38486054