Unpredictable threat increases early event-related potential amplitudes and cardiac acceleration: A brain-heart coupling study.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Blackwell Country of Publication: United States NLM ID: 0142657 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1469-8986 (Electronic) Linking ISSN: 00485772 NLM ISO Abbreviation: Psychophysiology Subsets: MEDLINE
    • Publication Information:
      Publication: Malden, MA : Blackwell
      Original Publication: Baltimore, Williams & Wilkins.
    • Subject Terms:
    • Abstract:
      In the face of unpredictable threat, rapid processing of external events and behavioral mobilization through early psychophysiological responses are crucial for survival. While unpredictable threat generally enhances early processing, it would seem adaptive to particularly increase sensitivity for unexpected events as they may signal danger. To examine this possibility, n = 77 participants performed an auditory oddball paradigm and received unpredictable shocks in threat but not in safe contexts while a stream of frequent (standard) and infrequent (deviant) tones was presented. We assessed event-related potentials (ERP), heart period (HP), and time-lagged within-subject correlations of single-trial EEG and HP (cardio-EEG covariance tracing, CECT) time-locked to the tones. N1 and P2 ERP amplitudes were generally enhanced under threat. The P3 amplitude was enhanced to deviants versus standards and this effect was reduced in the threat condition. Regarding HP, both threat versus safe and unexpected versus expected tones led to stronger cardiac acceleration, suggesting separate effects of threat and stimulus expectancy on HP. Finally, CECTs revealed two correlation clusters, indicating that single-trial EEG magnitudes in the N1/P2 and P3 time-windows predicted subsequent cardiac acceleration. The current results show that an unpredictable threat context enhances N1 and P2 amplitudes and cardiac acceleration to benign auditory stimuli. They further suggest separable cortical correlates of different effects on cardiac activity: an early N1/P2 correlate associated with threat-effects on HP and a later P3 correlate associated with expectedness-effects. Finally, the results indicate that unpredictable threat attenuates rather than enhances the processing of unexpected benign events during the P3 latency.
      (© 2024 The Authors. Psychophysiology published by Wiley Periodicals LLC on behalf of Society for Psychophysiological Research.)
    • References:
      Baas, J. M. P., Milstein, J., Donlevy, M., & Grillon, C. (2006). Brainstem correlates of defensive states in humans. Biological Psychiatry, 59(7), 588–593. https://doi.org/10.1016/j.biopsych.2005.09.009.
      Bar‐Haim, Y., Lamy, D., & Glickman, S. (2005). Attentional bias in anxiety: A behavioral and ERP study. Brain and Cognition, 59(1), 11–22. https://doi.org/10.1016/j.bandc.2005.03.005.
      Barry, R. J., & Sokolov, E. N. (1993). Habituation of phasic and tonic components of the orienting reflex. International Journal of Psychophysiology, 15(1), 39–42. https://doi.org/10.1016/0167‐8760(93)90093‐5.
      Benarroch, E. E. (1993). The central autonomic network: Functional organization, dysfunction, and perspective. Mayo Clinic Proceedings, 68(10), 988–1001. https://doi.org/10.1016/S0025‐6196(12)62272‐1.
      Brosschot, J., Verkuil, B., & Thayer, J. (2018). Generalized unsafety theory of stress: Unsafe environments and conditions, and the default stress response. International Journal of Environmental Research and Public Health, 15(3), 464. https://doi.org/10.3390/ijerph15030464.
      Bublatzky, F., & Schupp, H. T. (2012). Pictures cueing threat: Brain dynamics in viewing explicitly instructed danger cues. Social Cognitive and Affective Neuroscience, 7(6), 611–622. https://doi.org/10.1093/scan/nsr032.
      Carretié, L. (2004). Valence‐related vigilance biases in anxiety studied through event‐related potentials. Journal of Affective Disorders, 78(2), 119–130. https://doi.org/10.1016/S0165‐0327(02)00242‐2.
      Carsten, H. P., Härpfer, K., Nelson, B. D., Kathmann, N., & Riesel, A. (2023). Don't worry, it won't be fine. Contributions of worry and anxious arousal to startle responses and event‐related potentials in threat anticipation. Cognitive, Affective, & Behavioral Neuroscience, 23, 1141–1159. https://doi.org/10.3758/s13415‐023‐01094‐4.
      Cornwell, B. R., Baas, J. M. P., Johnson, L., Holroyd, T., Carver, F. W., Lissek, S., & Grillon, C. (2007). Neural responses to auditory stimulus deviance under threat of electric shock revealed by spatially‐filtered magnetoencephalography. NeuroImage, 37(1), 282–289. https://doi.org/10.1016/j.neuroimage.2007.04.055.
      Cornwell, B. R., Garrido, M. I., Overstreet, C., Pine, D. S., & Grillon, C. (2017). The unpredictive brain under threat: A neurocomputational account of anxious hypervigilance. Biological Psychiatry, 82(6), 447–454. https://doi.org/10.1016/j.biopsych.2017.06.031.
      Crowley, K. E., & Colrain, I. M. (2004). A review of the evidence for P2 being an independent component process: Age, sleep and modality. Clinical Neurophysiology, 115(4), 732–744. https://doi.org/10.1016/j.clinph.2003.11.021.
      Cuthbert, B. N., Schupp, H. T., Bradley, M., McManis, M., & Lang, P. J. (1998). Probing affective pictures: Attended startle and tone probes. Psychophysiology, 35(3), 344–347. https://doi.org/10.1017/S0048577298970536.
      Debener, S., Kranczioch, C., Herrmann, C. S., & Engel, A. K. (2002). Auditory novelty oddball allows reliable distinction of top–down and bottom–up processes of attention. International Journal of Psychophysiology, 46(1), 77–84. https://doi.org/10.1016/S0167‐8760(02)00072‐7.
      Dolan, R. J., Heinze, H. J., Hurlemann, R., & Hinrichs, H. (2006). Magnetoencephalography (MEG) determined temporal modulation of visual and auditory sensory processing in the context of classical conditioning to faces. NeuroImage, 32(2), 778–789. https://doi.org/10.1016/j.neuroimage.2006.04.206.
      Duncan‐Johnson, C. C., & Donchin, E. (1977). On quantifying surprise: The variation of event‐related potentials with subjective probability. Psychophysiology, 14(5), 456–467. https://doi.org/10.1111/j.1469‐8986.1977.tb01312.x.
      Erickson, M. A., Kappenman, E. S., & Luck, S. J. (2018). High temporal resolution measurement of cognitive and affective processes in psychopathology: What electroencephalography and magnetoencephalography can tell us about mental illness. Biological Psychiatry: Cognitive Neuroscience and Neuroimaging, 3(1), 4–6. https://doi.org/10.1016/j.bpsc.2017.11.008.
      Escera, C., Alho, K., Schröger, E., & Winkler, I. W. (2000). Involuntary attention and distractibility as evaluated with event‐related brain potentials. Audiology and Neurotology, 5(3–4), 151–166. https://doi.org/10.1159/000013877.
      Escera, C., Alho, K., Winkler, I., & Näätänen, R. (1998). Neural mechanisms of involuntary attention to acoustic novelty and change. Journal of Cognitive Neuroscience, 10(5), 590–604. https://doi.org/10.1162/089892998562997.
      Ferry, R. A., & Nelson, B. D. (2020). Differential impact of threat type on defensive motivation and attention during the NPU‐threat task. Motivation and Emotion, 44(5), 670–685. https://doi.org/10.1007/s11031‐020‐09835‐5.
      Ford, J. M., Roach, B. J., Palzes, V. A., & Mathalon, D. H. (2016). Using concurrent EEG and fMRI to probe the state of the brain in schizophrenia. NeuroImage: Clinical, 12, 429–441. https://doi.org/10.1016/j.nicl.2016.08.009.
      Freeston, M., & Komes, J. (2023). Revisiting uncertainty as a felt sense of unsafety: The somatic error theory of intolerance of uncertainty. Journal of Behavior Therapy and Experimental Psychiatry, 79, 101827. https://doi.org/10.1016/j.jbtep.2022.101827.
      García‐Larrea, L., Lukaszewicz, A.‐C., & Mauguiére, F. (1992). Revisiting the oddball paradigm. Non‐target vs neutral stimuli and the evaluation of ERP attentional effects. Neuropsychologia, 30(8), 723–741. https://doi.org/10.1016/0028‐3932(92)90042‐K.
      Gatchel, R. J., & Lang, P. J. (1973). Accuracy of psychophysical judgments and physiological response amplitude. Journal of Experimental Psychology, 98(1), 175–183. https://doi.org/10.1037/h0034312.
      Graham, F. K., & Clifton, R. K. (1966). Heart‐rate change as a component of the orienting response. Psychological Bulletin, 65(5), 305–320. https://doi.org/10.1037/h0023258.
      Grillon, C., Baas, J. P., Lissek, S., Smith, K., & Milstein, J. (2004). Anxious responses to predictable and unpredictable aversive events. Behavioral Neuroscience, 118(5), 916–924. https://doi.org/10.1037/0735‐7044.118.5.916.
      Grupe, D. W., & Nitschke, J. B. (2013). Uncertainty and anticipation in anxiety: An integrated neurobiological and psychological perspective. Nature Reviews Neuroscience, 14(7), 488–501. https://doi.org/10.1038/nrn3524.
      Guerra, P. M., Sánchez‐Adam, A., Miccoli, L., Polich, J., & Vila, J. (2016). Heart rate and P300: Integrating peripheral and central indices of cognitive processing. International Journal of Psychophysiology, 100, 1–11. https://doi.org/10.1016/j.ijpsycho.2015.12.008.
      Gupta, R. S., Kujawa, A., & Vago, D. R. (2019). The neural chronometry of threat‐related attentional bias: Event‐related potential (ERP) evidence for early and late stages of selective attentional processing. International Journal of Psychophysiology, 146, 20–42. https://doi.org/10.1016/j.ijpsycho.2019.08.006.
      Hamm, J. P., Ethridge, L. E., Shapiro, J. R., Pearlson, G. D., Tamminga, C. A., Sweeney, J. A., Keshavan, M. S., Thaker, G. K., & Clementz, B. A. (2013). Family history of psychosis moderates early auditory cortical response abnormalities in non‐psychotic bipolar disorder. Bipolar Disorders, 15(7), 774–786. https://doi.org/10.1111/bdi.12110.
      Hare, R. D., & Blevings, G. (1975). Conditioned orienting and defensive responses. Psychophysiology, 12(3), 289–297. https://doi.org/10.1111/j.1469‐8986.1975.tb01293.x.
      Hodges, W. F., & Spielberger, C. D. (1966). The effects of threat of shock on heart rate for subjects who differ in manifest anxiety and fear of shock. Psychophysiology, 2(4), 287–294. https://doi.org/10.1111/j.1469‐8986.1966.tb02656.x.
      Huang, Y., Shang, Q., Dai, S., & Ma, Q. (2017). Dread of uncertain pain: An event‐related potential study. PLoS One, 12(8), e0182489. https://doi.org/10.1371/journal.pone.0182489.
      Humphreys, G. W., Duncan, J. E., & Treisman, A. E. (1999). Attention, space, and action: Studies in cognitive neuroscience. Oxford University Press.
      Jennings, J. R. (1986). Bodily changes during attention. In M. G. H. Coles, E. Donchin, & S. W. Porges (Eds.), Psychophysiology: Systems, processes, and applications (pp. 268–289). Guilford Press.
      Kahneman, D. (1973). Attention and effort. Prentice‐Hall.
      Lacey, J. I. (1967). Somatic response patterning and stress: Some revisions of activation theory. Psychological Stress: Issues in Research, 14–37.
      LeDoux, J. E. (2000). Emotion circuits in the brain. Annual Review of Neuroscience, 23(1), 155–184. https://doi.org/10.1146/annurev.neuro.23.1.155.
      Lee, T.‐W., Girolami, M., & Sejnowski, T. J. (1999). Independent Component Analysis Using an Extended Infomax Algorithm for Mixed Subgaussian and Supergaussian Sources. Neural Computation, 11(2), 417–441. https://doi.org/10.1162/089976699300016719.
      Li, W., & Keil, A. (2023). Sensing fear: Fast and precise threat evaluation in human sensory cortex. Trends in Cognitive Sciences, 27(4), 341–352. https://doi.org/10.1016/j.tics.2023.01.001.
      Lindı́n, M., Zurrón, M., & Dı́az, F. (2004). Changes in P300 amplitude during an active standard auditory oddball task. Biological Psychology, 66(2), 153–167. https://doi.org/10.1016/j.biopsycho.2003.10.007.
      Löw, A., Weymar, M., & Hamm, A. O. (2015). When threat is near, get out of here: Dynamics of defensive behavior during freezing and active avoidance. Psychological Science, 26(11), 1706–1716. https://doi.org/10.1177/0956797615597332.
      Luck, S. J., & Hillyard, S. A. (1994). Electrophysiological correlates of feature analysis during visual search. Psychophysiology, 31(3), 291–308. https://doi.org/10.1111/j.1469‐8986.1994.tb02218.x.
      Lueckel, M., Panitz, C., Nater, U. M., & Mueller, E. M. (2018). Reliability and robustness of feedback‐evoked brain‐heart coupling after placebo, dopamine, and noradrenaline challenge. International Journal of Psychophysiology, 132, 298–310. https://doi.org/10.1016/j.ijpsycho.2018.01.010.
      Lyytinen, H., Blomberg, A.‐P., & Näätänen, R. (1992). Event‐related potentials and autonomic responses to a change in unattended auditory stimuli. Psychophysiology, 29(5), 523–534. https://doi.org/10.1111/j.1469‐8986.1992.tb02025.x.
      MacKinnon, D. W., & Dukes, W. F. (1962). Repression. In L. Postman (Ed.), Psychology in the making: Histories of selected research problems (pp. 662–744). Alfred A. Knopf.
      MacNamara, A., & Barley, B. (2018). Event‐related potentials to threat of predictable and unpredictable shock. Psychophysiology, 55(10), e13206. https://doi.org/10.1111/psyp.13206.
      May, P. J. C., & Tiitinen, H. (2010). Mismatch negativity (MMN), the deviance‐elicited auditory deflection, explained. Psychophysiology, 47(1), 66–122. https://doi.org/10.1111/j.1469‐8986.2009.00856.x.
      Miskovic, V., & Keil, A. (2012). Acquired fears reflected in cortical sensory processing: A review of electrophysiological studies of human classical conditioning: Acquired fears reflected in cortical sensory processing. Psychophysiology, 49(9), 1230–1241. https://doi.org/10.1111/j.1469‐8986.2012.01398.x.
      Morey, R. D. (2008). Confidence intervals from normalized data: A correction to Cousineau (2005). Tutorial in Quantitative Methods for Psychology, 4(2), 61–64. 10.20982/tqmp.04.2.p061.
      Morriss, J. (2023). Distinguishing different parameters of uncertainty under threat in the human brain. Neuroscience & Biobehavioral Reviews, 153, 105385. https://doi.org/10.1016/j.neubiorev.2023.105385.
      Mueller, E. M., Evers, E. A., Wacker, J., & van der Veen, F. (2012). Acute tryptophan depletion attenuates brain‐heart coupling following external feedback. Frontiers in Human Neuroscience, 6, 77. https://doi.org/10.3389/fnhum.2012.00077.
      Mueller, E. M., Panitz, C., Nestoriuc, Y., Stemmler, G., & Wacker, J. (2014). Panic disorder and serotonin reuptake inhibitors predict coupling of cortical and cardiac activity. Neuropsychopharmacology, 39(2), 507–514. https://doi.org/10.1038/npp.2013.224.
      Mueller, E. M., Stemmler, G., Hennig, J., & Wacker, J. (2013). 5‐HTTLPR and anxiety modulate brain‐heart covariation: 5‐HTTLPR, anxiety, and brain‐heart coupling. Psychophysiology, 50(5), 441–453. https://doi.org/10.1111/psyp.12016.
      Mueller, E. M., Stemmler, G., & Wacker, J. (2010). Single‐trial electroencephalogram predicts cardiac acceleration: A time‐lagged P‐correlation approach for studying neurovisceral connectivity. Neuroscience, 166(2), 491–500. https://doi.org/10.1016/j.neuroscience.2009.12.051.
      Näätänen, R., & Picton, T. (1987). The N1 wave of the human electric and magnetic response to sound: A review and an analysis of the component structure. Psychophysiology, 24(4), 375–425. https://doi.org/10.1111/j.1469‐8986.1987.tb00311.x.
      Nelson, B. D., & Hajcak, G. (2017). Defensive motivation and attention in anticipation of different types of predictable and unpredictable threat: A startle and event‐related potential investigation. Psychophysiology, 54(8), 1180–1194. https://doi.org/10.1111/psyp.12869.
      Nelson, B. D., Hajcak, G., & Shankman, S. A. (2015). Event‐related potentials to acoustic startle probes during the anticipation of predictable and unpredictable threat: Attention to threat and predictability. Psychophysiology, 52(7), 887–894. https://doi.org/10.1111/psyp.12418.
      Nelson, B. D., Weinberg, A., Pawluk, J., Gawlowska, M., & Proudfit, G. H. (2015). An event‐related potential investigation of fear generalization and intolerance of uncertainty. Behavior Therapy, 46(5), 661–670. https://doi.org/10.1016/j.beth.2014.09.010.
      Novak, G., Ritter, W., & Vaughan, H. G. (1992). Mismatch detection and the latency of temporal judgments. Psychophysiology, 29(4), 398–411. https://doi.org/10.1111/j.1469‐8986.1992.tb01713.x.
      Panitz, C., Wacker, J., Stemmler, G., & Mueller, E. M. (2013). Brain–heart coupling at the P300 latency is linked to anterior cingulate cortex and insula—A cardio‐electroencephalographic covariance tracing study. Biological Psychology, 94(1), 185–191. https://doi.org/10.1016/j.biopsycho.2013.05.017.
      Pizzagalli, D. A., Greischar, L. L., & Davidson, R. J. (2003). Spatio‐temporal dynamics of brain mechanisms in aversive classical conditioning: High‐density event‐related potential and brain electrical tomography analyses. Neuropsychologia, 41(2), 184–194. https://doi.org/10.1016/S0028‐3932(02)00148‐3.
      Polich, J. (2012). Neuropsychology of P300. In The Oxford handbook of event‐related potential components (pp. 159–188). Oxford University Press.
      Renner, K.‐H., Hock, M., Bergner‐Köther, R., & Laux, L. (2018). Differentiating anxiety and depression: The state–trait anxiety‐depression inventory. Cognition and Emotion, 32(7), 1409–1423. https://doi.org/10.1080/02699931.2016.1266306.
      Ritter, W., & Vaughan, H. G. (1969). Averaged evoked responses in vigilance and discrimination: A reassessment. Science, 164(3877), 326–328. https://doi.org/10.1126/science.164.3877.326.
      Schmitz, A., & Grillon, C. (2012). Assessing fear and anxiety in humans using the threat of predictable and unpredictable aversive events (the NPU‐threat test). Nature Protocols, 7(3), 527–532. https://doi.org/10.1038/nprot.2012.001.
      Schulz, A., & Vögele, C. (2015). Interoception and stress. Frontiers in Psychology, 6,, 993. https://doi.org/10.3389/fpsyg.2015.00993.
      Shackman, A. J., Maxwell, J. S., McMenamin, B. W., Greischar, L. L., & Davidson, R. J. (2011). Stress potentiates early and attenuates late stages of visual processing. Journal of Neuroscience, 31(3), 1156–1161. https://doi.org/10.1523/JNEUROSCI.3384‐10.2011.
      Somsen, R. J. M., Molen, M. W., & Orlebeke, J. F. (1983). Phasic heart rate changes in reaction time, shock avoidance, and unavoidable shock tasks: Are hypothetical generalizations about different S1‐S2 tasks justified? Psychophysiology, 20(1), 88–94. https://doi.org/10.1111/j.1469‐8986.1983.tb00908.x.
      Spearman, C. (1910). Correlation calculated from faulty data. British Journal of Psychology, 3(3), 271–295. https://doi.org/10.1111/j.2044‐8295.1910.tb00206.x.
      Sperl, M. F. J., Wroblewski, A., Mueller, M., Straube, B., & Mueller, E. M. (2021). Learning dynamics of electrophysiological brain signals during human fear conditioning. NeuroImage, 226, 117569. https://doi.org/10.1016/j.neuroimage.2020.117569.
      Squires, K. C., Donchin, E., Herning, R. I., & McCarthy, G. (1977). On the influence of task relevance and stimulus probability on event‐related‐potential components. Electroencephalography and Clinical Neurophysiology, 42(1), 1–14. https://doi.org/10.1016/0013‐4694(77)90146‐8.
      Steinberg, C., Bröckelmann, A.‐K., Rehbein, M., Dobel, C., & Junghöfer, M. (2013). Rapid and highly resolving associative affective learning: Convergent electro‐ and magnetoencephalographic evidence from vision and audition. Biological Psychology, 92(3), 526–540. https://doi.org/10.1016/j.biopsycho.2012.02.009.
      Stevens, E. S., Weinberg, A., Nelson, B. D., Meissel, E. E. E., & Shankman, S. A. (2018). The effect of panic disorder versus anxiety sensitivity on event‐related potentials during anticipation of threat. Journal of Anxiety Disorders, 54, 1–10. https://doi.org/10.1016/j.janxdis.2017.12.001.
      Thayer, J. F., & Lane, R. D. (2009). Claude Bernard and the heart–brain connection: Further elaboration of a model of neurovisceral integration. Neuroscience & Biobehavioral Reviews, 33(2), 81–88. https://doi.org/10.1016/j.neubiorev.2008.08.004.
      Tiitinen, H., May, P., Reinikainen, K., & Näätänen, R. (1994). Attentive novelty detection in humans is governed by pre‐attentive sensory memory. Nature, 372(6501), 90–92. https://doi.org/10.1038/372090a0.
      Tomé, D., Barbosa, F., Nowak, K., & Marques‐Teixeira, J. (2015). The development of the N1 and N2 components in auditory oddball paradigms: A systematic review with narrative analysis and suggested normative values. Journal of Neural Transmission, 122(3), 375–391. https://doi.org/10.1007/s00702‐014‐1258‐3.
      van den Bergh, O., Brosschot, J., Critchley, H., Thayer, J. F., & Ottaviani, C. (2021). Better safe than sorry: A common signature of general vulnerability for psychopathology. Perspectives on Psychological Science, 16(2), 225–246. https://doi.org/10.1177/1745691620950690.
      Verkindt, C., Bertrand, O., Perrin, F., Echallier, J.‐F., & Pernier, J. (1995). Tonotopic organization of the human auditory cortex: N100 topography and multiple dipole model analysis. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, 96(2), 143–156. https://doi.org/10.1016/0168‐5597(94)00242‐7.
      Vrana, S. R., & Lang, P. J. (1990). Fear imagery and the startle‐probe reflex. Journal of Abnormal Psychology, 99(2), 189–197. https://doi.org/10.1037/0021‐843X.99.2.189.
      Weymar, M., Bradley, M. M., Hamm, A. O., & Lang, P. J. (2013). When fear forms memories: Threat of shock and brain potentials during encoding and recognition. Cortex, 49(3), 819–826. https://doi.org/10.1016/j.cortex.2012.02.012.
      Wieser, M. J., & Keil, A. (2020). Attentional threat biases and their role in anxiety: A neurophysiological perspective. International Journal of Psychophysiology, 153, 148–158. https://doi.org/10.1016/j.ijpsycho.2020.05.004.
    • Grant Information:
      DFG MU 3535/6-1 Deutsche Forschungsgemeinschaft
    • Contributed Indexing:
      Keywords: CECT; cortico‐cardiac coupling; event‐related potential; evoked HP; threat; unpredictability
    • Publication Date:
      Date Created: 20240311 Date Completed: 20240605 Latest Revision: 20240605
    • Publication Date:
      20240605
    • Accession Number:
      10.1111/psyp.14563
    • Accession Number:
      38467585