Oxaliplatin lipidated prodrug synergistically enhances the anti-colorectal cancer effect of IL12 mRNA.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer Country of Publication: United States NLM ID: 101540061 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2190-3948 (Electronic) Linking ISSN: 2190393X NLM ISO Abbreviation: Drug Deliv Transl Res Subsets: MEDLINE
    • Publication Information:
      Original Publication: New York : Springer
    • Subject Terms:
    • Abstract:
      Colorectal cancer (CRC) is the fourth most common cancer in the world, with the second highest incidence rate after lung cancer. Oxaliplatin (OXA) is a broad-spectrum anti-tumor agent with significant therapeutic efficacy in colorectal cancer, and as a divalent platinum analog, it is not selective in its distribution in the body and has systemic toxicity with continued use. Interleukin-12 (IL12) is an immunostimulatory cytokine with cytokine monotherapy that has made advances in the fight against cancer, limiting the clinical use of cytokines due to severe toxicity. Here, we introduced a long alkyl chain and N-methyl-2,2-diaminodiethylamine to the ligand of OXA to obtain OXA-LIP, which effectively reduces its toxicity and improves the uptake of the drug by tumor cells. We successfully constructed IL12 mRNA and used LNPs to deliver IL12 mRNA, and in vivo pharmacodynamic studies demonstrated that OXA-LIP combined with IL12 mRNA had better tumor inhibition and higher biosafety. In addition, it was investigated by pharmacokinetic experiments that the OXA-LIP drug could accumulate in nude mice at the tumor site, which prolonged the half-life and enhanced the anti-tumor efficiency of OXA. It is hoped that these results will provide an important reference for the subsequent research and development of OXA-LIP with IL12 mRNA, as well as provide new therapeutic approaches for the treatment of colon cancer.
      (© 2024. Controlled Release Society.)
    • References:
      Dekker E, Tanis PJ, Vleugels JLA, et al. Colorectal cancer. Lancet. 2019;394(10207):1467–1480.  https://doi.org/10.1016/s0140-6736(19)32319-0 . (PMID: 10.1016/s0140-6736(19)32319-031631858)
      Cao W, Chen HD, Yu YW, et al. Changing profiles of cancer burden worldwide and in China: a secondary analysis of the global cancer statistics 2020. Chin Med J (Engl). 2021;134(7):783–791. https://doi.org/10.1097/cm9.0000000000001474 . (PMID: 10.1097/cm9.000000000000147433734139)
      Xia C, Dong X, Li H, et al. Cancer statistics in China and United States, 2022: profiles, trends, and determinants. Chin Med J (Engl). 2022;135(5):584–590. https://doi.org/10.1097/cm9.0000000000002108 . (PMID: 10.1097/cm9.000000000000210835143424)
      Chen L, Han X. Anti-PD-1/PD-L1 therapy of human cancer: past, present, and future. J Clin Invest. 2015;125(9):3384–91. https://doi.org/10.1172/jci80011 . (PMID: 10.1172/jci80011263250354588282)
      Taube JM, Klein A, Brahmer JR, et al. Association of PD-1, PD-1 ligands, and other features of the tumor immune microenvironment with response to anti-PD-1 therapy. Clin Cancer Res. 2014;20(19):5064–74. https://doi.org/10.1158/1078-0432.Ccr-13-3271 . (PMID: 10.1158/1078-0432.Ccr-13-3271247147714185001)
      Zhang YX, Zhao YY, Shen J, et al. Nanoenabled modulation of acidic tumor microenvironment reverses anergy of infiltrating T cells and potentiates anti-PD-1 therapy. Nano Lett. 2019;19(5):2774–2783. https://doi.org/10.1021/acs.nanolett.8b04296 . (PMID: 10.1021/acs.nanolett.8b0429630943039)
      Zhou F, Feng B, Yu H, et al. Tumor microenvironment-activatable prodrug vesicles for nanoenabled cancer chemoimmunotherapy combining immunogenic cell death induction and CD47 blockade. Adv Mater. 2019;31(14):e1805888. https://doi.org/10.1002/adma.201805888 . (PMID: 10.1002/adma.20180588830762908)
      Wang G, Yang B, Fu Z, et al. Efficacy and safety of oxaliplatin-based regimen versus cisplatin-based regimen in the treatment of gastric cancer: a meta-analysis of randomized controlled trials. Int J Clin Oncol. 2019;24(6):614–623. https://doi.org/10.1007/s10147-019-01425-x . (PMID: 10.1007/s10147-019-01425-x30919257)
      Perego P, Robert J. Oxaliplatin in the era of personalized medicine: from mechanistic studies to clinical efficacy. Cancer Chemother Pharmacol. 2016;77(1):5–18. https://doi.org/10.1007/s00280-015-2901-x . (PMID: 10.1007/s00280-015-2901-x26589793)
      Fu Y, Kong Y, Li X, et al. Novel Pt(IV) prodrug self-assembled nanoparticles with enhanced blood circulation stability and improved antitumor capacity of oxaliplatin for cancer therapy. Drug Deliv. 2023;30(1):2171158. https://doi.org/10.1080/10717544.2023.2171158 . (PMID: 10.1080/10717544.2023.2171158367442999904295)
      Mu M, Zhan J, Dai X, et al. Research progress of azido-containing Pt(IV) antitumor compounds. Eur J Med Chem. 2022;227:113927. https://doi.org/10.1016/j.ejmech.2021.113927 . (PMID: 10.1016/j.ejmech.2021.11392734695775)
      Venkatesh V, Sadler PJ. Platinum(IV) prodrugs. Met Ions Life Sci. 2018;18:69–108. https://doi.org/10.1515/9783110470734-009 .
      Liu X, Barth MC, Cseh K, et al. Oxoplatin-based Pt(IV) Lipoate complexes and their biological activity. Chem Biodivers. 2022;19(10):e202200695. https://doi.org/10.1002/cbdv.202200695 . (PMID: 10.1002/cbdv.20220069536026613)
      Liu X, Wenisch D, Dahlke P, et al. Multi-action platinum(IV) prodrugs conjugated with COX-inhibiting NSAIDs. Eur J Med Chem. 2023;257:115515. https://doi.org/10.1016/j.ejmech.2023.115515 . (PMID: 10.1016/j.ejmech.2023.11551537295160)
      Chapman RW, Corboz MR, Malinin VS, et al. An overview of the biology of a long-acting inhaled treprostinil prodrug. Pulm Pharmacol Ther. 2020;65:102002. https://doi.org/10.1016/j.pupt.2021.102002 . (PMID: 10.1016/j.pupt.2021.10200233596473)
      Colombo MP, Trinchieri G. Interleukin-12 in anti-tumor immunity and immunotherapy. Cytokine Growth Factor Rev. 2002;13(2):155–68. https://doi.org/10.1016/s1359-6101(01)00032-6 . (PMID: 10.1016/s1359-6101(01)00032-611900991)
      Del Vecchio M, Bajetta E, Canova S, et al. Interleukin-12: biological properties and clinical application. Clin Cancer Res. 2007;13(16):4677–85. https://doi.org/10.1158/1078-0432.Ccr-07-0776 . (PMID: 10.1158/1078-0432.Ccr-07-077617699845)
      Landoni E, Woodcock MG, Barragan G, et al. IL-12 reprograms CAR-expressing natural killer T cells to long-lived Th1-polarized cells with potent antitumor activity. Nat Commun. 2024;15(1):89. https://doi.org/10.1038/s41467-023-44310-y . (PMID: 10.1038/s41467-023-44310-y3816770710762263)
      Cirella A, Berraondo P, Di Trani CA, et al. Interleukin-12 message in a bottle. Clin Cancer Res. 2020;26(23):6080–6082. https://doi.org/10.1158/1078-0432.Ccr-20-3250 . (PMID: 10.1158/1078-0432.Ccr-20-325033004432)
      Wang Q, Cheng F, Ma TT, et al. Interleukin-12 inhibits the hepatocellular carcinoma growth by inducing macrophage polarization to the M1-like phenotype through downregulation of Stat-3. Mol Cell Biochem. 2016;415(1–2):157–68. https://doi.org/10.1007/s11010-016-2687-0 . (PMID: 10.1007/s11010-016-2687-027003285)
      Hewitt SL, Bailey D, Zielinski J, et al. Intratumoral IL12 mRNA therapy promotes TH1 transformation of the tumor microenvironment. Clin Cancer Res. 2020;26(23):6284–6298. https://doi.org/10.1158/1078-0432.Ccr-20-0472 . (PMID: 10.1158/1078-0432.Ccr-20-047232817076)
      Jung HN, Lee SY, Lee S, et al. Lipid nanoparticles for delivery of RNA therapeutics: current status and the role of in vivo imaging. Theranostics. 2022;12(17):7509–7531. https://doi.org/10.7150/thno.77259 . (PMID: 10.7150/thno.77259364384949691360)
      Liu JQ, Zhang C, Zhang X, et al. Intratumoral delivery of IL-12 and IL-27 mRNA using lipid nanoparticles for cancer immunotherapy. J Control Release. 2022;345:306–313. https://doi.org/10.1016/j.jconrel.2022.03.021 . (PMID: 10.1016/j.jconrel.2022.03.021353010539133152)
      Wang C, Zhang Y, Dong Y. Lipid nanoparticle-mRNA formulations for therapeutic applications. Acc Chem Res. 2021;54(23):4283–4293. https://doi.org/10.1021/acs.accounts.1c00550 . (PMID: 10.1021/acs.accounts.1c005503479312410068911)
      Tugues S, Burkhard SH, Ohs I, et al. New insights into IL-12-mediated tumor suppression. Cell Death Differ. 2015;22(2):237–46. https://doi.org/10.1038/cdd.2014.134 . (PMID: 10.1038/cdd.2014.13425190142)
      Feng B, Zhou FY, Xu ZA, et al. Versatile prodrug nanoparticles for acid-triggered precise imaging and organelle-specific combination cancer therapy. Adv Funct Mater. 2016;26(41):7431–7442. https://doi.org/10.1002/adfm.201602963 . (PMID: 10.1002/adfm.201602963)
      Lang T, Li N, Zhang J, et al. Prodrug-based nano-delivery strategy to improve the antitumor ability of carboplatin in vivo and in vitro. Drug Deliv. 2021;28(1):1272–1280. https://doi.org/10.1080/10717544.2021.1938754 . (PMID: 10.1080/10717544.2021.1938754341763818238065)
      Zhang Y, Li D, Shen Y, et al. Immunization with a novel mRNA vaccine, TGGT1_216200 mRNA-LNP, prolongs survival time in BALB/c mice against acute toxoplasmosis. Front Immunol. 2023;14:1161507. https://doi.org/10.3389/fimmu.2023.1161507 . (PMID: 10.3389/fimmu.2023.11615073712274010140528)
      Pardi N, Hogan MJ, Porter FW, et al. mRNA vaccines - a new era in vaccinology. Nat Rev Drug Discov. 2018;17(4):261–279. https://doi.org/10.1038/nrd.2017.243 . (PMID: 10.1038/nrd.2017.243293264265906799)
      Huysmans H, De Temmerman J, Zhong Z, et al. Improving the repeatability and efficacy of intradermal electroporated self-replicating mRNA. Mol Ther Nucleic Acids. 2019;17:388–395. https://doi.org/10.1016/j.omtn.2019.06.011 . (PMID: 10.1016/j.omtn.2019.06.011313070056626868)
      Cu Y, Broderick KE, Banerjee K, et al. Enhanced delivery and potency of self-amplifying mRNA vaccines by electroporation in situ. Vaccines (Basel). 2013;1(3):367–83. https://doi.org/10.3390/vaccines1030367 . (PMID: 10.3390/vaccines103036726344119)
      Li B, Cai M, Lin L, et al. MRI-visible and pH-sensitive micelles loaded with doxorubicin for hepatoma treatment. Biomater Sci. 2019;7(4):1529–1542. https://doi.org/10.1039/c8bm01501e . (PMID: 10.1039/c8bm01501e30681081)
      Wang XN, Li Y, Meng L, et al. Evaluation of influence of telmisartan on the pharmacokinetics and tissue distribution of canagliflozin in rats and mice. Ann Palliat Med. 2021;10(3):3086–3096. https://doi.org/10.21037/apm-21-65 . (PMID: 10.21037/apm-21-6533752434)
      Li T, Qian Y, Li H, et al. Combination of serum lipids and cancer antigens as a novel marker for colon cancer diagnosis. Lipids Health Dis. 2018;17(1):261. https://doi.org/10.1186/s12944-018-0911-5 . (PMID: 10.1186/s12944-018-0911-5304587966247608)
      Zhang X, Qin H, Tan X, et al. Predictive value of monocyte to high-density lipoprotein cholesterol ratio and tumor markers in colorectal cancer and their relationship with clinicopathological characteristics. World J Surg Oncol. 2023;21(1):200. https://doi.org/10.1186/s12957-023-03079-6 . (PMID: 10.1186/s12957-023-03079-63742021010329311)
      Riedl JM, Posch F, Prager G, et al. The AST/ALT (De Ritis) ratio predicts clinical outcome in patients with pancreatic cancer treated with first-line nab-paclitaxel and gemcitabine: post hoc analysis of an Austrian multicenter, noninterventional study. Ther Adv Med Oncol. 2020;12:1758835919900872. https://doi.org/10.1177/1758835919900872 . (PMID: 10.1177/1758835919900872323135667153180)
      Bahia MS, Silakari O. Tumor necrosis factor alpha converting enzyme: an encouraging target for various inflammatory disorders. Chem Biol Drug Des. 2010;75(5):415–43. https://doi.org/10.1111/j.1747-0285.2010.00950.x . (PMID: 10.1111/j.1747-0285.2010.00950.x20486929)
      van Horssen R, Ten Hagen TL, Eggermont AM. TNF-alpha in cancer treatment: molecular insights, antitumor effects, and clinical utility. Oncologist. 2006;11(4):397–408. https://doi.org/10.1634/theoncologist.11-4-397 . (PMID: 10.1634/theoncologist.11-4-39716614236)
      Margraf A, Ludwig N, Zarbock A, et al. Systemic inflammatory response syndrome after surgery: mechanisms and protection. Anesth Analg. 2020;131(6):1693–1707. https://doi.org/10.1213/ane.0000000000005175 . (PMID: 10.1213/ane.000000000000517533186158)
    • Grant Information:
      32070927 National Natural Science Foundation of China; ZR2023MC121 Department of Science and Technology of Shandong Province; 2023JCYJ060 Yantai Science and Technology Bureau; 2023JCYJ064 Yantai Science and Technology Bureau
    • Contributed Indexing:
      Keywords: Chemotherapy immunotherapy combination; IL12 mRNA; Lipid nanoparticles; Oxaliplatin; Prodrug
    • Accession Number:
      04ZR38536J (Oxaliplatin)
      0 (Prodrugs)
      187348-17-0 (Interleukin-12)
      0 (Antineoplastic Agents)
      0 (RNA, Messenger)
      0 (Lipids)
    • Publication Date:
      Date Created: 20240308 Date Completed: 20241001 Latest Revision: 20241008
    • Publication Date:
      20241009
    • Accession Number:
      10.1007/s13346-024-01540-x
    • Accession Number:
      38457025