Lipid droplets and cellular lipid flux.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Macmillan Magazines Ltd Country of Publication: England NLM ID: 100890575 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-4679 (Electronic) Linking ISSN: 14657392 NLM ISO Abbreviation: Nat Cell Biol Subsets: MEDLINE
    • Publication Information:
      Original Publication: London : Macmillan Magazines Ltd., [1999-
    • Subject Terms:
    • Abstract:
      Lipid droplets are dynamic organelles that store neutral lipids, serve the metabolic needs of cells, and sequester lipids to prevent lipotoxicity and membrane damage. Here we review the current understanding of the mechanisms of lipid droplet biogenesis and turnover, the transfer of lipids and metabolites at membrane contact sites, and the role of lipid droplets in regulating fatty acid flux in lipotoxicity and cell death.
      (© 2024. Springer Nature Limited.)
    • References:
      Olzmann, J. A. & Carvalho, P. Dynamics and functions of lipid droplets. Nat. Rev. Mol. Cell Biol. 20, 137–155 (2019). (PMID: 30523332674632910.1038/s41580-018-0085-z)
      Farese, R. V. & Walther, T. C. Glycerolipid synthesis and lipid droplet formation in the endoplasmic reticulum. Cold Spring Harb. Perspect. Biol. 15, a041246 (2023). (PMID: 3609664010.1101/cshperspect.a041246)
      Zadoorian, A., Du, X. & Yang, H. Lipid droplet biogenesis and functions in health and disease. Nat. Rev. Endocrinol. 19, 443–459 (2023). (PMID: 3722140210.1038/s41574-023-00845-0)
      Petan, T. Lipid droplets in cancer. Rev. Physiol. Biochem Pharm. 185, 53–86 (2023).
      Ralhan, I., Chang, C.-L., Lippincott-Schwartz, J. & Ioannou, M. S. Lipid droplets in the nervous system. J. Cell Biol. 220, e202102136 (2021). (PMID: 34152362822294410.1083/jcb.202102136)
      Bosch, M., Sweet, M. J., Parton, R. G. & Pol, A. Lipid droplets and the host–pathogen dynamic: FATal attraction? J. Cell Biol. 220, e202104005 (2021). (PMID: 34165498824085810.1083/jcb.202104005)
      Papsdorf, K. et al. Lipid droplets and peroxisomes are co-regulated to drive lifespan extension in response to mono-unsaturated fatty acids. Nat. Cell Biol. 25, 672–684 (2023). (PMID: 371277151018547210.1038/s41556-023-01136-6)
      Kumar, A. V. et al. Lipid droplets modulate proteostasis, SQST-1/SQSTM1 dynamics, and lifespan in C. elegans. iScience 26, 107960 (2023). (PMID: 378102331055190210.1016/j.isci.2023.107960)
      Roberts, M. A. & Olzmann, J. A. Protein quality control and lipid droplet metabolism. Annu. Rev. Cell Dev. Biol. 36, 115–139 (2020). (PMID: 33021827759383810.1146/annurev-cellbio-031320-101827)
      Dumesnil, C. et al. Cholesterol esters form supercooled lipid droplets whose nucleation is facilitated by triacylglycerols. Nat. Commun. 14, 915 (2023). (PMID: 36807572993822410.1038/s41467-023-36375-6)
      Mahamid, J. et al. Liquid-crystalline phase transitions in lipid droplets are related to cellular states and specific organelle association. Proc. Natl Acad. Sci. USA 116, 16866–16871 (2019). (PMID: 31375636670834410.1073/pnas.1903642116)
      Rogers, S. et al. Triglyceride lipolysis triggers liquid crystalline phases in lipid droplets and alters the LD proteome. J. Cell Biol. 221, e202205053 (2022). (PMID: 36112368948570610.1083/jcb.202205053)
      Henne, W. M. The (social) lives, deaths, and biophysical phases of lipid droplets. Curr. Opin. Cell Biol. 82, 102178 (2023). (PMID: 372950671078255410.1016/j.ceb.2023.102178)
      Sui, X. et al. Structure and catalytic mechanism of a human triacylglycerol-synthesis enzyme. Nature 581, 323–328 (2020). (PMID: 32433611739855710.1038/s41586-020-2289-6)
      Wang, L. et al. Structure and mechanism of human diacylglycerol O-acyltransferase 1. Nature 581, 329–332 (2020). (PMID: 32433610725504910.1038/s41586-020-2280-2)
      McLelland, G.-L. et al. Identification of an alternative triglyceride biosynthesis pathway. Nature 621, 171–178 (2023). (PMID: 376488671048267710.1038/s41586-023-06497-4)
      Thiam, A. R. & Ikonen, E. Lipid droplet nucleation. Trends Cell Biol. 31, 108–118 (2021). (PMID: 3329316810.1016/j.tcb.2020.11.006)
      Walther, T. C., Kim, S., Arlt, H., Voth, G. A. & Farese, R. V. Structure and function of lipid droplet assembly complexes. Curr. Opin. Struct. Biol. 80, 102606 (2023). (PMID: 371500401085303610.1016/j.sbi.2023.102606)
      Wang, H. et al. Seipin is required for converting nascent to mature lipid droplets. eLife 5, e16582 (2016). (PMID: 27564575503514510.7554/eLife.16582)
      Salo, V. T. et al. Seipin facilitates triglyceride flow to lipid droplet and counteracts droplet ripening via endoplasmic reticulum contact. Dev. Cell 50, 478–493.e9 (2019). (PMID: 3117840310.1016/j.devcel.2019.05.016)
      Sui, X. et al. Cryo-electron microscopy structure of the lipid droplet-formation protein seipin. J. Cell Biol. 217, 4080–4091 (2018). (PMID: 30327422627939210.1083/jcb.201809067)
      Yan, R. et al. Human SEIPIN binds anionic phospholipids. Dev. Cell 47, 248–256.e4 (2018). (PMID: 3029384010.1016/j.devcel.2018.09.010)
      Arlt, H. et al. Seipin forms a flexible cage at lipid droplet formation sites. Nat. Struct. Mol. Biol. 29, 194–202 (2022). (PMID: 35210614893077210.1038/s41594-021-00718-y)
      Klug, Y. A. et al. Mechanism of lipid droplet formation by the yeast Sei1/Ldb16 Seipin complex. Nat. Commun. 12, 5892 (2021). (PMID: 34625558850107710.1038/s41467-021-26162-6)
      Kim, S. et al. Seipin transmembrane segments critically function in triglyceride nucleation and lipid droplet budding from the membrane. eLife 11, e75808 (2022). (PMID: 35583926912249510.7554/eLife.75808)
      Zoni, V. et al. Seipin accumulates and traps diacylglycerols and triglycerides in its ring-like structure. Proc. Natl Acad. Sci. USA 118, e2017205118 (2021). (PMID: 33674387795828910.1073/pnas.2017205118)
      Prasanna, X. et al. Seipin traps triacylglycerols to facilitate their nanoscale clustering in the endoplasmic reticulum membrane. PLoS Biol. 19, e3000998 (2021). (PMID: 33481779785759310.1371/journal.pbio.3000998)
      Chorlay, A. et al. Membrane asymmetry imposes directionality on lipid droplet emergence from the ER. Dev. Cell 50, 25–42.e7 (2019). (PMID: 3115546610.1016/j.devcel.2019.05.003)
      Ben M’barek, K. et al. ER membrane phospholipids and surface tension control cellular lipid droplet formation. Dev. Cell 41, 591–604.e7 (2017). (PMID: 2857932210.1016/j.devcel.2017.05.012)
      Jiang, X. et al. Lack of VMP1 impairs hepatic lipoprotein secretion and promotes non-alcoholic steatohepatitis. J. Hepatol. 77, 619–631 (2022). (PMID: 35452693944986510.1016/j.jhep.2022.04.010)
      Li, Y. E. et al. TMEM41B and VMP1 are scramblases and regulate the distribution of cholesterol and phosphatidylserine. J. Cell Biol. 220, e202103105 (2021). (PMID: 33929485807717510.1083/jcb.202103105)
      Morishita, H. et al. A critical role of VMP1 in lipoprotein secretion. eLife 8, e48834 (2019). (PMID: 31526472674882410.7554/eLife.48834)
      Huang, D. et al. TMEM41B acts as an ER scramblase required for lipoprotein biogenesis and lipid homeostasis. Cell Metab. 33, 1655–1670.e8 (2021). (PMID: 3401526910.1016/j.cmet.2021.05.006)
      Mailler, E. et al. The autophagy protein ATG9A enables lipid mobilization from lipid droplets. Nat. Commun. 12, 6750 (2021). (PMID: 34799570860502510.1038/s41467-021-26999-x)
      Chung, J. et al. LDAF1 and seipin form a lipid droplet assembly complex. Dev. Cell 51, 551–563.e7 (2019). (PMID: 31708432723593510.1016/j.devcel.2019.10.006)
      Castro, I. G. et al. Promethin is a conserved seipin partner protein. Cells 8, 268 (2019). (PMID: 30901948646881710.3390/cells8030268)
      Joshi, A. S. et al. Lipid droplet and peroxisome biogenesis occur at the same ER subdomains. Nat. Commun. 9, 2940 (2018). (PMID: 30054481606392610.1038/s41467-018-05277-3)
      Joshi, A. S., Ragusa, J. V., Prinz, W. A. & Cohen, S. Multiple C2 domain–containing transmembrane proteins promote lipid droplet biogenesis and growth at specialized endoplasmic reticulum subdomains. Mol. Biol. Cell 32, 1147–1157 (2021). (PMID: 33826368835155810.1091/mbc.E20-09-0590)
      Ferreira, J. V. & Carvalho, P. Pex30-like proteins function as adaptors at distinct ER membrane contact sites. J. Cell Biol. 220, e202103176 (2021). (PMID: 34402813837487110.1083/jcb.202103176)
      Santinho, A. et al. Membrane curvature catalyzes lipid droplet assembly. Curr. Biol. 30, 2481–2494.e6 (2020). (PMID: 3244246710.1016/j.cub.2020.04.066)
      Renne, M. F., Corey, R. A., Ferreira, J. V., Stansfeld, P. J. & Carvalho, P. Seipin concentrates distinct neutral lipids via interactions with their acyl chain carboxyl esters. J. Cell Biol. 221, e202112068 (2022).
      Molenaar, M. R. et al. Retinyl esters form lipid droplets independently of triacylglycerol and seipin. J. Cell Biol. 220, e202011071 (2021). (PMID: 34323918832738010.1083/jcb.202011071)
      Sołtysik, K. et al. Nuclear lipid droplets form in the inner nuclear membrane in a seipin-independent manner. J. Cell Biol. 220, e202005026 (2021). (PMID: 3331507210.1083/jcb.202005026)
      Olarte, M.-J., Swanson, J. M. J., Walther, T. C. & Farese, R. V. The CYTOLD and ERTOLD pathways for lipid droplet–protein targeting. Trends Biochem. Sci. 47, 39–51 (2022). (PMID: 3458387110.1016/j.tibs.2021.08.007)
      Wilfling, F. et al. Triacylglycerol synthesis enzymes mediate lipid droplet growth by relocalizing from the ER to lipid droplets. Dev. Cell 24, 384–399 (2013). (PMID: 23415954372740010.1016/j.devcel.2013.01.013)
      Song, J. et al. Identification of two pathways mediating protein targeting from ER to lipid droplets. Nat. Cell Biol. 24, 1364–1377 (2022). (PMID: 36050470948146610.1038/s41556-022-00974-0)
      Schrul, B. & Kopito, R. R. Peroxin-dependent targeting of a lipid-droplet-destined membrane protein to ER subdomains. Nat. Cell Biol. 18, 740–751 (2016). (PMID: 27295553492526110.1038/ncb3373)
      Olzmann, J. A., Richter, C. M. & Kopito, R. R. Spatial regulation of UBXD8 and p97/VCP controls ATGL-mediated lipid droplet turnover. Proc. Natl Acad. Sci. USA 110, 1345–1350 (2013). (PMID: 23297223355708510.1073/pnas.1213738110)
      Olarte, M.-J. et al. Determinants of endoplasmic reticulum-to-lipid droplet protein targeting. Dev. Cell 54, 471–487.e7 (2020). (PMID: 32730754769665510.1016/j.devcel.2020.07.001)
      Boeszoermenyi, A. et al. Structure of a CGI-58 motif provides the molecular basis of lipid droplet anchoring. J. Biol. Chem. 290, 26361–26372 (2015). (PMID: 26350461464629310.1074/jbc.M115.682203)
      Grabner, G. F., Xie, H., Schweiger, M. & Zechner, R. Lipolysis: cellular mechanisms for lipid mobilization from fat stores. Nat. Metab. 3, 1445–1465 (2021). (PMID: 3479970210.1038/s42255-021-00493-6)
      Schott, M. B., Rozeveld, C. N., Weller, S. G. & McNiven, M. A. Lipophagy at a glance. J. Cell Sci. 135, jcs259402 (2022). (PMID: 35260889901437510.1242/jcs.259402)
      Soni, K. G. et al. Coatomer-dependent protein delivery to lipid droplets. J. Cell Sci. 122, 1834–1841 (2009). (PMID: 19461073268483510.1242/jcs.045849)
      Wilfling, F. et al. Arf1/COPI machinery acts directly on lipid droplets and enables their connection to the ER for protein targeting. eLife 3, e01607 (2014). (PMID: 24497546391303810.7554/eLife.01607)
      Beller, M. et al. COPI complex is a regulator of lipid homeostasis. PLoS Biol. 6, e292 (2008). (PMID: 19067489258636710.1371/journal.pbio.0060292)
      Zechner, R., Madeo, F. & Kratky, D. Cytosolic lipolysis and lipophagy: two sides of the same coin. Nat. Rev. Mol. Cell Biol. 18, 671–684 (2017). (PMID: 2885222110.1038/nrm.2017.76)
      Lass, A. et al. Adipose triglyceride lipase-mediated lipolysis of cellular fat stores is activated by CGI-58 and defective in Chanarin-Dorfman Syndrome. Cell Metab. 3, 309–319 (2006). (PMID: 1667928910.1016/j.cmet.2006.03.005)
      Kimmel, A. R. & Sztalryd, C. The perilipins: major cytosolic lipid droplet-associated proteins and their roles in cellular lipid storage, mobilization, and systemic homeostasis. Annu. Rev. Nutr. 36, 471–509 (2016). (PMID: 2743136910.1146/annurev-nutr-071813-105410)
      Granneman, J. G., Moore, H.-P. H., Mottillo, E. P., Zhu, Z. & Zhou, L. Interactions of perilipin-5 (Plin5) with adipose triglyceride lipase. J. Biol. Chem. 286, 5126–5135 (2011). (PMID: 2114814210.1074/jbc.M110.180711)
      Yang, A., Mottillo, E. P., Mladenovic-Lucas, L., Zhou, L. & Granneman, J. G. Dynamic interactions of ABHD5 with PNPLA3 regulate triacylglycerol metabolism in brown adipocytes. Nat. Metab. 1, 560–569 (2019). (PMID: 31497752673067010.1038/s42255-019-0066-3)
      Wang, Y., Kory, N., BasuRay, S., Cohen, J. C. & Hobbs, H. H. PNPLA3, CGI-58, and inhibition of hepatic triglyceride hydrolysis in mice. Hepatology 69, 2427–2441 (2019). (PMID: 3080298910.1002/hep.30583)
      Sanders, M. A. et al. Endogenous and synthetic ABHD5 ligands regulate ABHD5-perilipin interactions and lipolysis in fat and muscle. Cell Metab. 22, 851–860 (2015). (PMID: 26411340486200710.1016/j.cmet.2015.08.023)
      Yang, X. et al. The G 0 /G 1 switch gene 2 regulates adipose lipolysis through association with adipose triglyceride lipase. Cell Metab. 11, 194–205 (2010). (PMID: 20197052365884310.1016/j.cmet.2010.02.003)
      DiStefano, M. T. et al. The lipid droplet protein hypoxia-inducible gene 2 promotes hepatic triglyceride deposition by inhibiting lipolysis. J. Biol. Chem. 290, 15175–15184 (2015). (PMID: 25922078446345910.1074/jbc.M115.650184)
      Tseng, Y. Y. et al. Structural and functional insights into ABHD5, a ligand-regulated lipase co-activator. Sci. Rep. 12, 2565 (2022). (PMID: 35173175885047710.1038/s41598-021-04179-7)
      Kulminskaya, N. et al. Unmasking crucial residues in adipose triglyceride lipase for coactivation with comparative gene identification-58. J. Lipid. Res. 65, 100491 (2024).
      Kohlmayr, J. M. et al. Mutational scanning pinpoints distinct binding sites of key ATGL regulators in lipolysis. Preprint at bioRxiv https://doi.org/10.1101/2023.05.10.540188 (2023).
      Mayer, N. et al. Development of small-molecule inhibitors targeting adipose triglyceride lipase. Nat. Chem. Biol. 9, 785–787 (2013). (PMID: 2409630210.1038/nchembio.1359)
      Schott, M. B. et al. Lipid droplet size directs lipolysis and lipophagy catabolism in hepatocytes. J. Cell Biol. 218, 3320–3335 (2019). (PMID: 31391210678145410.1083/jcb.201803153)
      Chung, J. et al. The Troyer syndrome protein spartin mediates selective autophagy of lipid droplets. Nat. Cell Biol. 25, 1101–1110 (2023). (PMID: 374432871041518310.1038/s41556-023-01178-w)
      Herker, E., Vieyres, G., Beller, M., Krahmer, N. & Bohnert, M. Lipid droplet contact sites in health and disease. Trends Cell Biol. 31, 345–358 (2021). (PMID: 3354692210.1016/j.tcb.2021.01.004)
      Prinz, W. A., Toulmay, A. & Balla, T. The functional universe of membrane contact sites. Nat. Rev. Mol. Cell Biol. 21, 7–24 (2020). (PMID: 3173271710.1038/s41580-019-0180-9)
      Wong, L. H., Gatta, A. T. & Levine, T. P. Lipid transfer proteins: the lipid commute via shuttles, bridges and tubes. Nat. Rev. Mol. Cell Biol. 20, 85–101 (2019). (PMID: 3033766810.1038/s41580-018-0071-5)
      Hanna, M., Guillén-Samander, A. & De Camilli, P. RBG motif bridge-like lipid transport proteins: structure, functions, and open questions. Annu. Rev. Cell Dev. Biol. 39, 409–434 (2023). (PMID: 3740629910.1146/annurev-cellbio-120420-014634)
      Du, X. et al. ORP5 localizes to ER-lipid droplet contacts and regulates the level of PI(4)P on lipid droplets. J. Cell Biol. 219, e201905162 (2020). (PMID: 3165367310.1083/jcb.201905162)
      Guyard, V. et al. ORP5 and ORP8 orchestrate lipid droplet biogenesis and maintenance at ER–mitochondria contact sites. J. Cell Biol. 221, e202112107 (2022). (PMID: 35969857937514310.1083/jcb.202112107)
      Olkkonen, V. M., Koponen, A. & Arora, A. OSBP-related protein 2 (ORP2): unraveling its functions in cellular lipid/carbohydrate metabolism, signaling and F-actin regulation. J. Steroid Biochem. Mol. Biol. 192, 105298 (2019). (PMID: 3071646510.1016/j.jsbmb.2019.01.016)
      Wang, T. et al. OSBPL2 is required for the binding of COPB1 to ATGL and the regulation of lipid droplet lipolysis. iScience 23, 101252 (2020). (PMID: 32650117734800210.1016/j.isci.2020.101252)
      Velikkakath, A. K. G., Nishimura, T., Oita, E., Ishihara, N. & Mizushima, N. Mammalian Atg2 proteins are essential for autophagosome formation and important for regulation of size and distribution of lipid droplets. Mol. Biol. Cell 23, 896–909 (2012). (PMID: 22219374329064710.1091/mbc.e11-09-0785)
      Korfhage, J. L. et al. ATG2A-mediated bridge-like lipid transport regulates lipid droplet accumulation. Preprint at bioRxiv https://doi.org/10.1101/2023.08.14.553257 (2023).
      Bersuker, K. et al. A proximity labeling strategy provides insights into the composition and dynamics of lipid droplet proteomes. Dev. Cell 44, 97–112.e7 (2018). (PMID: 2927599410.1016/j.devcel.2017.11.020)
      Yeshaw, W. M. et al. Human VPS13A is associated with multiple organelles and influences mitochondrial morphology and lipid droplet motility. eLife 8, e43561 (2019). (PMID: 30741634638928710.7554/eLife.43561)
      Kumar, N. et al. VPS13A and VPS13C are lipid transport proteins differentially localized at ER contact sites. J. Cell Biol. 217, 3625–3639 (2018). (PMID: 30093493616826710.1083/jcb.201807019)
      Chen, S. et al. VPS13A and VPS13C influence lipid droplet abundance. Contact 5, 25152564221125613 (2022). (PMID: 36147729949162310.1177/25152564221125613)
      Ghanbarpour, A., Valverde, D. P., Melia, T. J. & Reinisch, K. M. A model for a partnership of lipid transfer proteins and scramblases in membrane expansion and organelle biogenesis. Proc. Natl Acad. Sci. USA 118, e2101562118 (2021). (PMID: 33850023807240810.1073/pnas.2101562118)
      Van Vliet, A. R. et al. ATG9A and ATG2A form a heteromeric complex essential for autophagosome formation. Mol. Cell 82, 4324–4339.e8 (2022). (PMID: 3634725910.1016/j.molcel.2022.10.017)
      Matoba, K. et al. Atg9 is a lipid scramblase that mediates autophagosomal membrane expansion. Nat. Struct. Mol. Biol. 27, 1185–1193 (2020). (PMID: 3310665810.1038/s41594-020-00518-w)
      Wang, H. et al. Perilipin 5, a lipid droplet-associated protein, provides physical and metabolic linkage to mitochondria. J. Lipid Res. 52, 2159–2168 (2011). (PMID: 21885430322028410.1194/jlr.M017939)
      Miner, G. E. et al. PLIN5 interacts with FATP4 at membrane contact sites to promote lipid droplet-to-mitochondria fatty acid transport. Dev. Cell 58, 1250–1265.e6 (2023). (PMID: 3729044510.1016/j.devcel.2023.05.006)
      Hariri, H. et al. Mdm1 maintains endoplasmic reticulum homeostasis by spatially regulating lipid droplet biogenesis. J. Cell Biol. 218, 1319–1334 (2019). (PMID: 30808705644683710.1083/jcb.201808119)
      Jägerström, S. et al. Lipid droplets interact with mitochondria using SNAP23. Cell Biol. Int. 33, 934–940 (2009). (PMID: 1952468410.1016/j.cellbi.2009.06.011)
      Ouyang, Q. et al. Rab8a as a mitochondrial receptor for lipid droplets in skeletal muscle. Dev. Cell 58, 289–305.e6 (2023). (PMID: 3680099710.1016/j.devcel.2023.01.007)
      Najt, C. P. et al. Lipid droplet-derived monounsaturated fatty acids traffic via PLIN5 to allosterically activate SIRT1. Mol. Cell 77, 810–824.e8 (2020). (PMID: 3190144710.1016/j.molcel.2019.12.003)
      Wang, J. et al. An ESCRT-dependent step in fatty acid transfer from lipid droplets to mitochondria through VPS13D−TSG101 interactions. Nat. Commun. 12, 1252 (2021). (PMID: 33623047790263110.1038/s41467-021-21525-5)
      Nguyen, T. B. et al. DGAT1-dependent lipid droplet biogenesis protects mitochondrial function during starvation-induced autophagy. Dev. Cell 42, 9–21.e5 (2017). (PMID: 28697336555361310.1016/j.devcel.2017.06.003)
      Rambold, A. S., Cohen, S. & Lippincott-Schwartz, J. Fatty acid trafficking in starved cells: regulation by lipid droplet lipolysis, autophagy, and mitochondrial fusion dynamics. Dev. Cell 32, 678–692 (2015). (PMID: 25752962437501810.1016/j.devcel.2015.01.029)
      Benador, I. Y. et al. Mitochondria bound to lipid droplets have unique bioenergetics, composition, and dynamics that support lipid droplet expansion. Cell Metab. 27, 869–885.e6 (2018). (PMID: 29617645596953810.1016/j.cmet.2018.03.003)
      Freyre, C. A. C., Rauher, P. C., Ejsing, C. S. & Klemm, R. W. MIGA2 links mitochondria, the ER, and lipid droplets and promotes de novo lipogenesis in adipocytes. Mol. Cell 76, 811–825.e14 (2019). (PMID: 3162804110.1016/j.molcel.2019.09.011)
      Najt, C. P. et al. Organelle interactions compartmentalize hepatic fatty acid trafficking and metabolism. Cell Rep. 42, 112435 (2023). (PMID: 371040881027815210.1016/j.celrep.2023.112435)
      Gallardo-Montejano, V. I. et al. Perilipin 5 links mitochondrial uncoupled respiration in brown fat to healthy white fat remodeling and systemic glucose tolerance. Nat. Commun. 12, 3320 (2021). (PMID: 34083525817559710.1038/s41467-021-23601-2)
      Gallardo-Montejano, V. I. et al. Nuclear perilipin 5 integrates lipid droplet lipolysis with PGC-1α/SIRT1-dependent transcriptional regulation of mitochondrial function. Nat. Commun. 7, 12723 (2016). (PMID: 27554864499951910.1038/ncomms12723)
      Hong, Z. et al. Mitoguardin-2–mediated lipid transfer preserves mitochondrial morphology and lipid droplet formation. J. Cell Biol. 221, e202207022 (2022). (PMID: 36282247959735310.1083/jcb.202207022)
      Kim, H., Lee, S., Jun, Y. & Lee, C. Structural basis for mitoguardin-2 mediated lipid transport at ER-mitochondrial membrane contact sites. Nat. Commun. 13, 3702 (2022). (PMID: 35764626923999710.1038/s41467-022-31462-6)
      Listenberger, L. L., Ory, D. S. & Schaffer, J. E. Palmitate-induced apoptosis can occur through a ceramide-independent pathway. J. Biol. Chem. 276, 14890–14895 (2001). (PMID: 1127865410.1074/jbc.M010286200)
      Zhu, X. G. et al. CHP1 regulates compartmentalized glycerolipid synthesis by activating GPAT4. Mol. Cell 74, 45–58.e7 (2019). (PMID: 30846317645071710.1016/j.molcel.2019.01.037)
      Piccolis, M. et al. Probing the global cellular responses to lipotoxicity caused by saturated fatty acids. Mol. Cell 74, 32–44.e8 (2019). (PMID: 30846318769667010.1016/j.molcel.2019.01.036)
      Masuda, M. et al. Saturated phosphatidic acids mediate saturated fatty acid–induced vascular calcification and lipotoxicity. J. Clin. Invest. 125, 4544–4558 (2015). (PMID: 26517697466579510.1172/JCI82871)
      Volmer, R., van der Ploeg, K. & Ron, D. Membrane lipid saturation activates endoplasmic reticulum unfolded protein response transducers through their transmembrane domains. Proc. Natl Acad. Sci. USA 110, 4628–4633 (2013). (PMID: 23487760360697510.1073/pnas.1217611110)
      Halbleib, K. et al. Activation of the unfolded protein response by lipid bilayer stress. Mol. Cell 67, 673–684.e8 (2017). (PMID: 2868966210.1016/j.molcel.2017.06.012)
      Chitraju, C. et al. Triglyceride synthesis by DGAT1 protects adipocytes from lipid-induced ER stress during lipolysis. Cell Metab. 26, 407–418.e3 (2017). (PMID: 28768178619522610.1016/j.cmet.2017.07.012)
      Listenberger, L. L. et al. Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc. Natl Acad. Sci. USA 100, 3077–3082 (2003). (PMID: 1262921415224910.1073/pnas.0630588100)
      Otten, E. G. et al. Ubiquitylation of lipopolysaccharide by RNF213 during bacterial infection. Nature 594, 111–116 (2021). (PMID: 34012115761090410.1038/s41586-021-03566-4)
      Sugihara, M. et al. The AAA+ ATPase/ubiquitin ligase mysterin stabilizes cytoplasmic lipid droplets. J. Cell Biol. 218, 949–960 (2019). (PMID: 30705059640056210.1083/jcb.201712120)
      Senkal, C. E. et al. Ceramide is metabolized to acylceramide and stored in lipid droplets. Cell Metab. 25, 686–697 (2017). (PMID: 28273483547242410.1016/j.cmet.2017.02.010)
      Jiang, X., Stockwell, B. R. & Conrad, M. Ferroptosis: mechanisms, biology and role in disease. Nat. Rev. Mol. Cell Biol. 22, 266–282 (2021). (PMID: 33495651814202210.1038/s41580-020-00324-8)
      Li, Z., Lange, M., Dixon, S. J. & Olzmann, J. A. Lipid quality control and ferroptosis: from concept to mechanism. Annu. Rev. Biochem. https://doi.org/10.1146/annurev-biochem-052521-033527 (2024). (PMID: 10.1146/annurev-biochem-052521-033527)
      Yang, W. S. et al. Regulation of ferroptotic cancer cell death by GPX4. Cell 156, 317–331 (2014). (PMID: 24439385407641410.1016/j.cell.2013.12.010)
      Doll, S. et al. FSP1 is a glutathione-independent ferroptosis suppressor. Nature 575, 693–698 (2019). (PMID: 3163489910.1038/s41586-019-1707-0)
      Bersuker, K. et al. The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature 575, 688–692 (2019). (PMID: 31634900688316710.1038/s41586-019-1705-2)
      Mishima, E. et al. A non-canonical vitamin K cycle is a potent ferroptosis suppressor. Nature 608, 778–783 (2022). (PMID: 35922516940243210.1038/s41586-022-05022-3)
      Jin, D.-Y. et al. A genome-wide CRISPR-Cas9 knockout screen identifies FSP1 as the warfarin-resistant vitamin K reductase. Nat. Commun. 14, 828 (2023). (PMID: 36788244992932810.1038/s41467-023-36446-8)
      Danielli, M., Perne, L., Jarc Jovičić, E. & Petan, T. Lipid droplets and polyunsaturated fatty acid trafficking: balancing life and death. Front. Cell Dev. Biol. 11, 1104725 (2023). (PMID: 36776554991189210.3389/fcell.2023.1104725)
      Doll, S. et al. ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat. Chem. Biol. 13, 91–98 (2017). (PMID: 2784207010.1038/nchembio.2239)
      Magtanong, L. et al. Exogenous monounsaturated fatty acids promote a ferroptosis-resistant cell state. Cell Chem. Biol. 26, 420–432.e9 (2019). (PMID: 30686757643069710.1016/j.chembiol.2018.11.016)
      Dierge, E. et al. Peroxidation of n-3 and n-6 polyunsaturated fatty acids in the acidic tumor environment leads to ferroptosis-mediated anticancer effects. Cell Metab. 33, 1701–1715.e5 (2021). (PMID: 3411818910.1016/j.cmet.2021.05.016)
      Ioannou, M. S. et al. Neuron-astrocyte metabolic coupling protects against activity-induced fatty acid toxicity. Cell 177, 1522–1535.e14 (2019). (PMID: 3113038010.1016/j.cell.2019.04.001)
      Minami, J. K. et al. CDKN2A deletion remodels lipid metabolism to prime glioblastoma for ferroptosis. Cancer Cell 41, 1048–1060.e9 (2023). (PMID: 3723619610.1016/j.ccell.2023.05.001)
      Bailey, A. P. et al. Antioxidant role for lipid droplets in a stem cell niche of drosophila. Cell 163, 340–353 (2015). (PMID: 26451484460108410.1016/j.cell.2015.09.020)
      Ralhan, I. et al. Autolysosomal exocytosis of lipids protect neurons from ferroptosis. J. Cell Biol. 222, e202207130 (2023). (PMID: 370364451009814310.1083/jcb.202207130)
      Mohammadyani, D. et al. Molecular speciation and dynamics of oxidized triacylglycerols in lipid droplets: mass spectrometry and coarse-grained simulations. Free Radic. Biol. Med 76, 53–60 (2014). (PMID: 25110833427625410.1016/j.freeradbiomed.2014.07.042)
      Ferrada, L., Barahona, M. J., Vera, M., Stockwell, B. R. & Nualart, F. Dehydroascorbic acid sensitizes cancer cells to system x c inhibition-induced ferroptosis by promoting lipid droplet peroxidation. Cell Death Dis. 14, 637 (2023).
      Zou, Y. et al. A GPX4-dependent cancer cell state underlies the clear-cell morphology and confers sensitivity to ferroptosis. Nat. Commun. 10, 1617 (2019). (PMID: 30962421645388610.1038/s41467-019-09277-9)
      Roberts, M. A. et al. Parallel CRISPR-Cas9 screens identify mechanisms of PLIN2 and lipid droplet regulation. Dev. Cell 58, 1782–1800.e10 (2023). (PMID: 3749493310.1016/j.devcel.2023.07.001)
      Mejhert, N. et al. The Lipid Droplet Knowledge Portal: a resource for systematic analyses of lipid droplet biology. Dev. Cell 57, 387–397.e4 (2022). (PMID: 35134345912988510.1016/j.devcel.2022.01.003)
      Wang, L. et al. Nonalcoholic fatty liver disease experiences accumulation of hepatic liquid crystal associated with increasing lipophagy. Cell Biosci. 10, 55 (2020). (PMID: 32280452713745010.1186/s13578-020-00414-2)
      Prévost, C. et al. Mechanism and determinants of amphipathic helix-containing protein targeting to lipid droplets. Dev. Cell 44, 73–86.e4 (2018). (PMID: 29316443576411410.1016/j.devcel.2017.12.011)
      Chorlay, A. & Thiam, A. R. Neutral lipids regulate amphipathic helix affinity for model lipid droplets. J. Cell Biol. 219, e201907099 (2020). (PMID: 32328636714709510.1083/jcb.201907099)
      Wolins, N. E., Brasaemle, D. L. & Bickel, P. E. A proposed model of fat packaging by exchangeable lipid droplet proteins. FEBS Lett. 580, 5484–5491 (2006). (PMID: 1696210410.1016/j.febslet.2006.08.040)
      Kim, S., Swanson, J. M. J. & Voth, G. A. Computational studies of lipid droplets. J. Phys. Chem. B 126, 2145–2154 (2022). (PMID: 35263109895755110.1021/acs.jpcb.2c00292)
      Chen, F., Yin, Y., Chua, B. T. & Li, P. CIDE family proteins control lipid homeostasis and the development of metabolic diseases. Traffic 21, 94–105 (2020). (PMID: 3174612110.1111/tra.12717)
      Lyu, X. et al. A gel-like condensation of Cidec generates lipid-permeable plates for lipid droplet fusion. Dev. Cell 56, 2592–2606.e7 (2021). (PMID: 3450865810.1016/j.devcel.2021.08.015)
      Qian, K. et al. CLSTN3β enforces adipocyte multilocularity to facilitate lipid utilization. Nature 613, 160–168 (2023). (PMID: 3647754010.1038/s41586-022-05507-1)
      Sharma, A. K. & Wolfrum, C. Lipid cycling isn’t all futile. Nat. Metab. 5, 540–541 (2023). (PMID: 3701249710.1038/s42255-023-00779-x)
      Wunderling, K., Zurkovic, J., Zink, F., Kuerschner, L. & Thiele, C. Triglyceride cycling enables modification of stored fatty acids. Nat. Metab. 5, 699–709 (2023). (PMID: 370124951013298010.1038/s42255-023-00769-z)
      Patel, R. et al. ATGL is a biosynthetic enzyme for fatty acid esters of hydroxy fatty acids. Nature 606, 968–975 (2022). (PMID: 35676490924285410.1038/s41586-022-04787-x)
      Yore, M. M. et al. Discovery of a class of endogenous mammalian lipids with anti-diabetic and anti-inflammatory effects. Cell 159, 318–332 (2014). (PMID: 25303528426097210.1016/j.cell.2014.09.035)
      Schulze, R. J. et al. Direct lysosome-based autophagy of lipid droplets in hepatocytes. Proc. Natl Acad. Sci. USA 117, 32443–32452 (2020).
      Menon, D. et al. ARL8B mediates lipid droplet contact and delivery to lysosomes for lipid remobilization. Cell Rep. 42, 113203 (2023). (PMID: 3777796010.1016/j.celrep.2023.113203)
      Omrane, M. et al. LC3B is lipidated to large lipid droplets during prolonged starvation for noncanonical autophagy. Dev. Cell 58, 1266–1281.e7 (2023). (PMID: 3731556210.1016/j.devcel.2023.05.009)
    • Grant Information:
      R01 DK128099 United States DK NIDDK NIH HHS; R01 GM112948 United States GM NIGMS NIH HHS; R01GM112948 U.S. Department of Health & Human Services | National Institutes of Health (NIH); R01DK128099 U.S. Department of Health & Human Services | National Institutes of Health (NIH)
    • Accession Number:
      0 (Fatty Acids)
    • Publication Date:
      Date Created: 20240307 Date Completed: 20240318 Latest Revision: 20240905
    • Publication Date:
      20240905
    • Accession Number:
      PMC11228001
    • Accession Number:
      10.1038/s41556-024-01364-4
    • Accession Number:
      38454048