Focus on senescence: Clinical significance and practical applications.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Blackwell Scientific Publications Country of Publication: England NLM ID: 8904841 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1365-2796 (Electronic) Linking ISSN: 09546820 NLM ISO Abbreviation: J Intern Med Subsets: MEDLINE
    • Publication Information:
      Original Publication: Oxford : Blackwell Scientific Publications, c1989-
    • Subject Terms:
    • Abstract:
      The older population is increasing worldwide, and life expectancy is continuously rising, predominantly thanks to medical and technological progress. Healthspan refers to the number of years an individual can live in good health. From a gerontological viewpoint, the mission is to extend the life spent in good health, promoting well-being and minimizing the impact of aging-related diseases to slow the aging process. Biologically, aging is a malleable process characterized by an intra- and inter-individual heterogeneous and dynamic balance between accumulating damage and repair mechanisms. Cellular senescence is a key component of this process, with senescent cells accumulating in different tissues and organs, leading to aging and age-related disease susceptibility over time. Removing senescent cells from the body or slowing down the burden rate has been proposed as an efficient way to reduce age-dependent deterioration. In animal models, senotherapeutic molecules can extend life expectancy and lifespan by either senolytic or senomorphic activity. Much research shows that dietary and physical activity-driven lifestyle interventions protect against senescence. This narrative review aims to summarize the current knowledge on targeting senescent cells to reduce the risk of age-related disease in animal models and their translational potential for humans. We focused on studies that have examined the potential role of senotherapeutics in slowing the aging process and modifying age-related disease burdens. The review concludes with a general discussion of the mechanisms underlying this unique trajectory and its implications for future research.
      (© 2024 The Association for the Publication of the Journal of Internal Medicine.)
    • References:
      Kontis V, Bennett JE, Mathers CD, Li G, Foreman K, Ezzati M. Future life expectancy in 35 industrialised countries: projections with a Bayesian model ensemble. Lancet. 2017;389:1323–1335.
      Meyer AC, Drefahl S, Ahlbom A, Lambe M, Modig K. Trends in life expectancy: did the gap between the healthy and the ill widen or close? BMC Med. 2020;18:1–10.
      Gruenberg EM. The failures of success. Milbank Q. 2005;83:779.
      Welsh CE, Matthews FE, Jagger C. Trends in life expectancy and healthy life years at birth and age 65 in the UK, 2008–2016, and other countries of the EU28: an observational cross‐sectional study. Lancet Reg Health Eur. 2021;2:100023.
      Beller J, Luy M, Giarelli G, Regidor E, Lostao L, Tetzlaff J, et al. Trends in activity limitations from an international perspective: differential changes between age groups across 30 countries. J Aging Health. 2023;35:477–499.
      Chatterji S, Byles J, Cutler D, Seeman T, Verdes E. Health, functioning, and disability in older adults—present status and future implications. Lancet. 2015;385:563–575.
      Hoogendijk EO, Afilalo J, Ensrud KE, Kowal P, Onder G, Fried LP. Frailty: implications for clinical practice and public health. Lancet. 2019;394:1365–1375.
      Fries JF. Frailty, heart disease, and stroke: the compression of morbidity paradigm. Am J Prev Med. 2005;29:164–168.
      Onder G, Vetrano DL, Marengoni A, Bell JS, Johnell K, Palmer K. Accounting for frailty when treating chronic diseases. Eur J Intern Med. 2018;56:49–52.
      Polidori MC, Ferrucci L. Frailty from conceptualization to action: the biopsychosocial model of frailty and resilience. Aging Clin Exp Res. 2023;35(4):725–727.
      Cesari M, De Carvalho IA, Thiyagarajan JA, Cooper C, Martin FC, Reginster J‐Y, et al. Evidence for the domains supporting the construct of intrinsic capacity. J Gerontol A Biol Sci Med Sci. 2018;73:1653–1660.
      Beard JR, Officer A, De Carvalho IA, Sadana R, Pot AM, Michel J‐P, et al. The world report on ageing and health: a policy framework for healthy ageing. Lancet. 2016;387:2145–2154.
      World Health Organization. Integrated care for older people: guidelines on community‐level interventions to manage declines in intrinsic capacity. Geneva: WHO; 2017.
      Liu S, Kang L, Liu XH, Zhao S, Wang X, Li J, et al. Trajectory and correlation of intrinsic capacity and frailty in a Beijing elderly community. Front Med. 2021;8:751586.
      Zhao J, Chhetri JK, Chang Y, Zheng Z, Ma L, Chan P. Intrinsic capacity vs. multimorbidity: a function‐centered construct predicts disability better than a disease‐based approach in a community‐dwelling older population cohort. Front Med. 2021;8:753295.
      Gutiérrez‐Robledo LM, García‐Chanes RE, González‐Bautista E, Rosas‐Carrasco O. Validation of two intrinsic capacity scales and its relationship with frailty and other outcomes in Mexican community‐dwelling older adults. J Nutr Health Aging. 2021;25:33–40.
      Meng LC, Huang ST, Peng LN, Chen LK, Hsiao FY. Biological features of the outcome‐based intrinsic capacity composite scores from a population‐based cohort study: pas de deux of biological and functional aging. Front Med. 2022;9:851882.
      Ferrucci L, Gonzalez‐Freire M, Fabbri E, Simonsick E, Tanaka T, Moore Z, et al. Measuring biological aging in humans: A quest. Aging Cell. 2020;19(2):e13080.
      Morris BJ, Willcox BJ, Donlon TA. Genetic and epigenetic regulation of human aging and longevity. Biochim Biophys Acta Mol Basis Dis. 2019;1865:1718–1744.
      López‐Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. The hallmarks of aging. Cell. 2013;153:1194.
      Kumar P, Liu C, Suliburk J, Hsu JW, Muthupillai R, Jahoor F, et al. Supplementing glycine and N‐acetylcysteine (GlyNAC) in older adults improves glutathione deficiency, oxidative stress, mitochondrial dysfunction, inflammation, physical function, and aging hallmarks: a randomized clinical trial. J Gerontol A. 2023;78:75–89.
      Partridge L, Fuentealba M, Kennedy BK. The quest to slow ageing through drug discovery. Na Rev Drug Discov. 2020;19:513–532.
      López‐Otín C, Blasco MA, Partridge L, Serrano M, Kroemer G. Hallmarks of aging: an expanding universe. Cell. 2023;186:243–278.
      Chaib S, Tchkonia T, Kirkland JL. Cellular senescence and senolytics: the path to the clinic. Nat Med. 2022;28:1556–1568.
      Niccoli T, Partridge L. Ageing as a risk factor for disease. Curr Biol. 2012;22:R741–R752.
      Boccardi V, Mecocci P. Senotherapeutics: targeting senescent cells for the main age‐related diseases. Mech Ageing Dev. 2021;197:111526.
      Kennedy BK, Berger SL, Brunet A, Campisi J, Cuervo AM, Epel ES, et al. Geroscience: linking aging to chronic disease. Cell. 2014;159:709–713.
      Childs BG, Gluscevic M, Baker DJ, Laberge R‐M, Marquess D, Dananberg J, et al. Senescent cells: an emerging target for diseases of ageing. Nat Rev Drug Discov. 2017;16:718–735.
      Song S, Lam EW, Tchkonia T, Kirkland JL, Sun Y. Senescent cells: emerging targets for human aging and age‐related diseases. Trends Biochem Sci. 2020;45(7):578–592.
      Victorelli S, Passos JF. Telomeres and cell senescence—size matters not. EBioMedicine. 2017;21:14–20.
      Lorenzo EC, Torrance BL, Haynes L. Impact of senolytic treatment on immunity, aging, and disease. Front Aging. 2023;4:1161799.
      Davalos AR, Coppe JP, Campisi J, Desprez PY. Senescent cells as a source of inflammatory factors for tumor progression. Cancer Metastasis Rev. 2010;29:273–283.
      Sun Y, Coppé JP, Lam EWF. Cellular senescence: the sought or the unwanted? Trends Mol Med. 2018;24:871–885.
      Olivieri F, Prattichizzo F, Grillari J, Balistreri CR. Cellular senescence and inflammaging in age‐related diseases. Mediators Inflamm. 2018;2018:9076485.
      Mehdizadeh M, Aguilar M, Thorin E, Ferbeyre G, Nattel S. The role of cellular senescence in cardiac disease: basic biology and clinical relevance. Nat Rev Cardiol. 2021;19:250–264.
      D'Adda Di Fagagna F, Reaper PM, Clay‐Farrace L, Fiegler H, Carr P, Von Zglinicki T, et al. A DNA damage checkpoint response in telomere‐initiated senescence. Nature. 2003;426:194–198.
      Hu C, Zhang X, Teng T, Ma ZG, Tang QZ. Cellular senescence in cardiovascular diseases: a systematic review. Aging Dis. 2022;13:103–128.
      Minamino T, Miyauchi H, Yoshida T, Ishida Y, Yoshida H, Komuro I. Endothelial cell senescence in human atherosclerosis. Circulation. 2002;105:1541–1544.
      Wang J, Uryga AK, Reinhold J, Figg N, Baker L, Finigan A, et al. Vascular smooth muscle cell senescence promotes atherosclerosis and features of plaque vulnerability. Circulation. 2015;132:1909–1919.
      Childs BG, Li H, Van Deursen JM. Senescent cells: a therapeutic target for cardiovascular disease. J Clin Invest. 2018;128:1217–1228.
      Song P, Zhao Q, Zou MH. Targeting senescent cells to attenuate cardiovascular disease progression. Ageing Res Rev. 2020;60:101072.
      Polidori MC, Mecocci P. Modeling the dynamics of energy imbalance: the free radical theory of aging and frailty revisited. Free Radic Biol Med. 2022;181:235–240.
      Anderson R, Lagnado A, Maggiorani D, Walaszczyk A, Dookun E, Chapman J, et al. Length‐independent telomere damage drives post‐mitotic cardiomyocyte senescence. EMBO J. 2019;38:e100492.
      Sack MN, Fyhrquist FY, Saijonmaa OJ, Fuster V, Kovacic JC. Basic biology of oxidative stress and the cardiovascular system: part 1 of a 3‐part series. J Am Coll Cardiol. 2017;70:196–211.
      Chen K, Wang S, Sun QW, Zhang B, Ullah M, Sun Z. Klotho deficiency causes heart aging via impairing the Nrf2‐GR pathway. Circ Res. 2021;128:492–507.
      Dias IHK, Brown CL, Shabir K, Polidori MC, Griffiths HR. miRNA 933 expression by endothelial cells is increased by 27‐hydroxycholesterol and is more prevalent in plasma from dementia patients. J Alzheimer's Dis. 2018;64:1009–1017.
      Nikolajevic J, Ariaee N, Liew A, Abbasnia S, Fazeli B, Sabovic M. The role of microRNAs in endothelial cell senescence. Cells. 2022;11:1185.
      Bu H, Wedel S, Cavinato M, Jansen‐Dürr P. MicroRNA regulation of oxidative stress‐induced cellular senescence. Oxid Med Cell Longev. 2017;2017:2398696.
      Sweeney M, Cook SA, Gil J. Therapeutic opportunities for senolysis in cardiovascular disease. FEBS J. 2023;290:1235–1255.
      Boccardi V, Mecocci P. The importance of cellular senescence in frailty and cardiovascular diseases. Adv Exp Med Biol. 2020;1216:79–86.
      Ding YN, Wang HY, Chen HZ, Liu DP. Targeting senescent cells for vascular aging and related diseases. J Mol Cell Cardiol. 2022;162:43–52.
      Suda M, Paul KH, Minamino T, Miller JD, Lerman A, Ellison‐Hughes GM, et al. Senescent cells: a therapeutic target in cardiovascular diseases. Cells. 2023;12(9):1296.
      Afsar B, Afsar RE. Hypertension and cellular senescence. Biogerontology. 2023;24:457–478.
      Farr JN, Fraser DG, Wang H, Jaehn K, Ogrodnik MB, Weivoda MM, et al. Identification of senescent cells in the bone microenvironment. J Bone Miner Res. 2016;31:1920–1929.
      Stolzing A, Jones E, McGonagle D, Scutt A. Age‐related changes in human bone marrow‐derived mesenchymal stem cells: consequences for cell therapies. Mech Ageing Dev. 2008;129:163–173.
      Ambrosi TH, Marecic O, McArdle A, Sinha R, Gulati GS, Tong X, et al. Aged skeletal stem cells generate an inflammatory degenerative niche. Nature. 2021;597:256–262.
      Saul D, Kosinsky RL, Atkinson EJ, Doolittle ML, Zhang Xu, Lebrasseur NK, et al. A new gene set identifies senescent cells and predicts senescence‐associated pathways across tissues. Nat Commun. 2022;13:1–15.
      Liu G, Wang J, Wei Z, Fang C‐L, Shen K, Qian C, et al. Elevated PDGF‐BB from bone impairs hippocampal vasculature by inducing PDGFRβ shedding from pericytes. Adv Sci. 2023;10:2206938.
      Wang J, Fang CL, Noller K, Wei Z, Liu G, Shen K, et al. Bone‐derived PDGF‐BB drives brain vascular calcification in male mice. J Clin Invest. 2023;133(23):e168447.
      Welle S, Brooks AI, Delehanty JM, Needler N, Bhatt K, Shah B, et al. Skeletal muscle gene expression profiles in 20–29 year old and 65–71 year old women. Exp Gerontol. 2004;39:369–377.
      Sugihara H, Teramoto N, Nakamura K, Shiga T, Shirakawa T, Matsuo M, et al. Cellular senescence‐mediated exacerbation of Duchenne muscular dystrophy. Sci Rep. 2020;10:1–17.
      Montarras D, L'Honoré A, Buckingham M. Lying low but ready for action: the quiescent muscle satellite cell. FEBS J. 2013;280:4036–4050.
      Sousa‐Victor P, Gutarra S, García‐Prat L, Rodriguez‐Ubreva J, Ortet L, Ruiz‐Bonilla V, et al. Geriatric muscle stem cells switch reversible quiescence into senescence. Nature. 2014;506:316–321.
      Liu Y, Sanoff HK, Cho H, Burd CE, Torrice C, Ibrahim JG, et al. Expression of p16INK4a in peripheral blood T‐cells is a biomarker of human aging. Aging Cell. 2009;8:439–448.
      Granic A, Martin‐Ruiz C, Dodds RM, Robinson L, Spyridopoulos I, Kirkwood TBl, et al. Immunosenescence profiles are not associated with muscle strength, physical performance and sarcopenia risk in very old adults: the Newcastle 85+ study. Mech Ageing Dev. 2020;190:111321.
      Wan M, Gray‐Gaillard EF, Elisseeff JH. Cellular senescence in musculoskeletal homeostasis, diseases, and regeneration. Bone Res. 2021;9:1–12.
      García‐Prat L, Sousa‐Victor P, Muñoz‐Cánoves P. Functional dysregulation of stem cells during aging: a focus on skeletal muscle stem cells. FEBS J. 2013;280:4051–4062.
      Hernandez‐Segura A, de Jong TV, Melov S, Guryev V, Campisi J, Demaria M. Unmasking transcriptional heterogeneity in senescent cells. Curr Biol. 2017;27:2652–2660.e4.
      Martínez‐Cué C, Rueda N. Cellular senescence in neurodegenerative diseases. Front Cell Neurosci. 2020;14:16.
      Shafqat A, Khan S, Omer MH, Niaz M, Albalkhi I, AlKattan K, et al. Cellular senescence in brain aging and cognitive decline. Front Aging Neurosci. 2023;15:1281581.
      Sikora E, Bielak‐Zmijewska A, Dudkowska M, Krzystyniak A, Mosieniak G, Wesierska M, et al. cellular senescence in brain aging. Front Aging Neurosci. 2021;13:646924.
      Chinta SJ, Woods G, Rane A, Demaria M, Campisi J, Andersen JK. Cellular senescence and the aging brain. Exp Gerontol. 2015;68:3–7.
      Melo Dos Santos LS, Trombetta‐Lima M, Eggen B, Demaria M. Cellular senescence in brain aging and neurodegeneration. Ageing Res Rev. 2023;93:102141.
      Dehkordi SK, Walker J, Sah E, Bennett E, Atrian F, Frost B, et al. Profiling senescent cells in human brains reveals neurons with CDKN2D/p19 and tau neuropathology. Nat Aging. 2021;1(12):1107–1116.
      Finicelli M, Liu R‐M. Aging, cellular senescence, and Alzheimer's disease. Int J Mol Sci. 2022;23:1989.
      Wissler Gerdes EO, Zhu Y, Weigand BM, Tripathi U, Burns TC, Tchkonia T, et al. Cellular senescence in aging and age‐related diseases: implications for neurodegenerative diseases. Int Rev Neurobiol. 2020;155:203–234.
      Lecca D, Jung YJ, Scerba MT, Hwang I, Kim YK, Kim S, et al. Role of chronic neuroinflammation in neuroplasticity and cognitive function: a hypothesis. Alzheimer's & Dement. 2022;18:2327–2340.
      Prinz M, Priller J. Microglia and brain macrophages in the molecular age: from origin to neuropsychiatric disease. Nat Rev Neurosci. 2014;15:300–312.
      Greenwood EK, Brown DR. Senescent microglia: the key to the ageing brain? Int J Mol Sci. 2021;22:4402.
      Musi N, Valentine JM, Sickora KR, Baeuerle E, Thompson CS, Shen Q, et al. Tau protein aggregation is associated with cellular senescence in the brain. Aging Cell. 2018;17:e12840.
      Surmeier DJ, Obeso JA, Halliday GM. Selective neuronal vulnerability in Parkinson disease. Nat Rev Neurosci. 2017;18:101–113.
      Pajares M, I Rojo A, Manda G, Boscá L, Cuadrado A. Inflammation in Parkinson's disease: mechanisms and therapeutic implications. Cells. 2020;9:1687.
      Tjalkens RB, Popichak KA, Kirkley KA. Inflammatory activation of microglia and astrocytes in manganese neurotoxicity. Adv Neurobiol. 2017;18:159–181.
      Dias V, Junn E, Mouradian MM. The role of oxidative stress in Parkinson's disease. J Parkinsons Dis. 2013;3:461–491.
      Chakrabarti S, Bisaglia M. Oxidative stress and neuroinflammation in Parkinson's disease: the role of dopamine oxidation products. Antioxidants. 2023;12:955.
      Riessland M, Kolisnyk B, Kim TW, Cheng J, Ni J, Pearson JA, et al. Loss of SATB1 induces p21‐dependent cellular senescence in post‐mitotic dopaminergic neurons. Cell Stem Cell. 2019;25(4):514–530.
      Tanaka T, Biancotto A, Moaddel R, Moore AZ, Gonzalez‐Freire M, Aon MA, et al. Plasma proteomic signature of age in healthy humans. Aging Cell. 2018;17:e12799.
      Schmeer C, Kretz A, Wengerodt D, Stojiljkovic M, Witte OW. Dissecting aging and senescence‐current concepts and open lessons. Cells. 2019;8(11):1446.
      Zampino M, Polidori MC, Ferrucci L, O'neill D, Pilotto A, Gogol M, et al. Biomarkers of aging in real life: three questions on aging and the comprehensive geriatric assessment. Geroscience. 2022;44:2611–2622.
      He X, Liu J, Liu B, Shi J. The use of DNA methylation clock in aging research. Exp Biol Med. 2020;246:436–446. https://doi.org/10.1177/1535370220968802.
      Behr LC, Simm A, Kluttig A, Grosskopf (Großkopf) A. 60 Years of healthy aging: on definitions, biomarkers, scores and challenges. Ageing Res Rev. 2023;88:101934.
      Ubaida‐Mohien C, Tanaka T, Tian Q, Moore Z, Moaddel R, Basisty N, et al. Blood biomarkers for healthy aging. Gerontology. 2023;69:1167–1174.
      Silva N, Rajado AT, Esteves F, Brito D, Apolónio J, Roberto VP, et al. Measuring healthy ageing: current and future tools. Biogerontology. 2023;24(6):845–866.
      Sepúlveda M, Arauna D, García F, Albala C, Palomo I, Fuentes E. Frailty in aging and the search for the optimal biomarker: a review. Biomedicines. 2022;10:1426.
      Brisson AR, Matsui D, Rieder MJ, Fraser DD. Translational research in pediatrics: tissue sampling and biobanking. Pediatrics. 2012;129:153–162.
      Rad AN, Grillari J. Current senolytics: mode of action, efficacy and limitations, and their future. Mech Ageing Dev. 2023;217:111888. Epub ahead of print.
      Ogrodnik M, Evans SA, Fielder E, Victorelli S, Kruger P, Salmonowicz H, et al. Whole‐body senescent cell clearance alleviates age‐related brain inflammation and cognitive impairment in mice. Aging Cell. 2021;20:e13296.
      Zhu X, Raina AK, Perry G, Smith MA. Alzheimer's disease: the two‐hit hypothesis. Lancet Neurol. 2004;3:219–226.
      Polidori MC, Schulz RJ. Nutritional contributions to dementia prevention: main issues on antioxidant micronutrients. Genes Nutr. 2014;9:1–11.
      Olivieri F, Prattichizzo F, Lattanzio F, Bonfigli AR, Spazzafumo L. Antifragility and antiinflammaging: can they play a role for a healthy longevity? Ageing Res Rev. 2023;84:101836.
      Boccardi V, Pigliautile M, Guazzarini AG, Mecocci P. The potential of fasting‐mimicking diet as a preventive and curative strategy for Alzheimer's disease. Biomolecules. 2023;13:1133.
      Sharma V, Mehdi MM. Oxidative stress, inflammation and hormesis: the role of dietary and lifestyle modifications on aging. Neurochem Int. 2023;164:105490.
      Kassis A, Fichot MC, Horcajada MN, Horstman AMH, Duncan P, Bergonzelli G, et al. Nutritional and lifestyle management of the aging journey: a narrative review. Front Nutr. 2023;9:1087505.
      Andreo‐López MC, Contreras‐Bolívar V, Muñoz‐Torres M, García‐Fontana B, García‐Fontana C. Influence of the mediterranean diet on healthy aging. Int J Mol Sci. 2023;24:4491.
      El Assar M, Álvarez‐Bustos A, Sosa P, Angulo J, Rodríguez‐Mañas L. Effect of physical activity/exercise on oxidative stress and inflammation in muscle and vascular aging. Int J Mol Sci. 2022;23:8713.
      Rodriguez‐Mañas L, Rodríguez‐Artalejo F, Sinclair AJ. The third transition: the clinical evolution oriented to the contemporary older patient. J Am Med Dir Assoc. 2017;18:8–9.
      Dzau VJ, Inouye SK, Rowe JW, Finkelman E, Yamada T. Enabling healthful aging for all—the national academy of medicine grand challenge in healthy longevity. N Engl J Med. 2019;381:1699–1701.
      Zhu Y, Tchkonia T, Pirtskhalava T, Gower AC, Ding H, Giorgadze N, et al. The Achilles' heel of senescent cells: from transcriptome to senolytic drugs. Aging Cell. 2015;14:644–658.
      Fuhrmann‐Stroissnigg H, Ling YY, Zhao J, Mcgowan SJ, Zhu Yi, Brooks RW, et al. Identification of HSP90 inhibitors as a novel class of senolytics. Nat Commun. 2017;8:1–14.
      Kirkland JL, Tchkonia T. Cellular senescence: a translational perspective. EBioMedicine. 2017;21:21–28.
      Yousefzadeh MJ, Zhu Y, McGowan SJ, Angelini L, Fuhrmann‐Stroissnigg H, Xu M, et al. Fisetin is a senotherapeutic that extends health and lifespan. EBioMedicine. 2018;36:18–28.
      Zhang L, Pitcher LE, Prahalad V, Niedernhofer LJ, Robbins PD. Targeting cellular senescence with senotherapeutics: senolytics and senomorphics. FEBS J. 2023;290:1362–1383.
      He Y, Li W, Lv D, Zhang X, Zhang X, Ortiz YT, et al. Inhibition of USP7 activity selectively eliminates senescent cells in part via restoration of p53 activity. Aging Cell. 2020;19:e13117.
      Schoenwaelder SM, Jarman KE, Gardiner EE, Hua My, Qiao J, White MJ, et al. Bcl‐xL–inhibitory BH3 mimetics can induce a transient thrombocytopathy that undermines the hemostatic function of platelets. Blood. 2011;118:1663–1674.
      Chang J, Wang Y, Shao L, Laberge R‐M, Demaria M, Campisi J, et al. Clearance of senescent cells by ABT263 rejuvenates aged hematopoietic stem cells in mice. Nat Med. 2015;22:78–83.
      Suda M, Shimizu I, Katsuumi G, Yoshida Y, Hayashi Y, Ikegami R, et al. Senolytic vaccination improves normal and pathological age‐related phenotypes and increases lifespan in progeroid mice. Nat Aging. 2021;1:1117–1126.
      Attanzio A, Buoso E, Biundo F, Khalil R, Diab‐Assaf M, Lemaitre J‐M. Emerging therapeutic approaches to target the dark side of senescent cells: new hopes to treat aging as a disease and to delay age‐related pathologies. Cells. 2023;12:915.
      Zhang P, Kishimoto Y, Grammatikakis I, Gottimukkala K, Cutler RG, Zhang S, et al. Senolytic therapy alleviates Aβ‐associated oligodendrocyte progenitor cell senescence and cognitive deficits in an Alzheimer's disease model. Nat Neurosci. 2019;22:719–728.
      Witham MD, Granic A, Miwa S, Passos JF, Richardson GD, Sayer AA. New Horizons in cellular senescence for clinicians. Age Ageing. 2023;52:1–9.
      Dehkordi SK, Walker J, Sah E, Bennett E, Atrian F, Frost B, et al. Profiling senescent cells in human brains reveals neurons with CDKN2D/p19 and tau neuropathology. Nat Aging. 2021;1(12):1107–1116.
      Justice JN, Nambiar AM, Tchkonia T, Lebrasseur NK, Pascual R, Hashmi SK, et al. Senolytics in idiopathic pulmonary fibrosis: results from a first‐in‐human, open‐label, pilot study. EBioMedicine. 2019;40:554–563.
      Hickson LTJ, Langhi Prata LGP, Bobart SA, Evans TK, Giorgadze N, Hashmi SK, et al. Senolytics decrease senescent cells in humans: preliminary report from a clinical trial of dasatinib plus quercetin in individuals with diabetic kidney disease. EBioMedicine. 2019;47:446–456.
      Gonzales MM, Garbarino VR, Marques Zilli E, Petersen RC, Kirkland JL, Tchkonia T, et al. Senolytic therapy to modulate the progression of Alzheimer's disease (SToMP‐AD): a pilot clinical trial. J Prev Alzheimer's Dis. 2022;9:22–29.
      Gonzales MM, Garbarino VR, Kautz TF, Palavicini JP, Lopez‐Cruzan M, Dehkordi SK, et al. Senolytic therapy in mild Alzheimer's disease: a phase 1 feasibility trial. Nat Med. 2023;29:2481–2488.
      Riessland M, Orr ME. Translating the biology of aging into new therapeutics for Alzheimer's disease: senolytics. J Prev Alzheimer's Dis. 2023;10:633–646.
      Jankowsky JL, Fadale DJ, Anderson J, Xu GM, Gonzales V, Jenkins NA, et al. Mutant presenilins specifically elevate the levels of the 42 residue beta‐amyloid peptide in vivo: evidence for augmentation of a 42‐specific gamma secretase. Hum Mol Genet. 2004;13(2):159–170.
      Santacruz K, Lewis J, Spires T, Paulson J, Kotilinek L, Ingelsson M, et al. Tau suppression in a neurodegenerative mouse model improves memory function. Science. 2005;309(5733):476–481.
      Wegmann S, Maury EA, Kirk MJ, Saqran L, Roe A, DeVos SL, et al. Removing endogenous tau does not prevent tau propagation yet reduces its neurotoxicity. EMBO J. 2015;34(24):3028–3041.
      Hoover BR, Reed MN, Su J, Penrod RD, Kotilinek LA, Grant MK, et al. Tau mislocalization to dendritic spines mediates synaptic dysfunction independently of neurodegeneration. Neuron. 2010;68(6):1067–1081.
      Yoshiyama Y, Higuchi M, Zhang B, Huang SM, Iwata N, Saido TC, et al. Synapse loss and microglial activation precede tangles in a P301S tauopathy mouse model. Neuron. 2007;53(3):337–351.
      Bussian TJ, Aziz A, Meyer CF, Swenson BL, van Deursen JM, Baker DJ. Clearance of senescent glial cells prevents tau‐dependent pathology and cognitive decline. Nature. 2018;562(7728):578–582.
      Baker DJ, Wijshake T, Tchkonia T, LeBrasseur NK, Childs BG, van de Sluis B, et al. Clearance of p16Ink4a‐positive senescent cells delays ageing‐associated disorders. Nature. 2011;479(7372):232–236.
      Wang R, Yu Z, Sunchu B, Shoaf J, Dang I, Zhao S, et al. Rapamycin inhibits the secretory phenotype of senescent cells by a Nrf2‐independent mechanism. Aging Cell. 2017;16(3):564–574.
      Riordan R, Rong W, Yu Z, Ross G, Valerio J, Dimas‐Muñoz J, et al. Effect of Nrf2 loss on senescence and cognition of tau‐based P301S mice. Geroscience. 2023;45(3):1451–1469.
      Millar CL, Iloputaife I, Baldyga K, Kuo J, Tchkonia T, et al. Rationale and design of STAMINA: Senolytics to alleviate mobility issues and neurological impairments in aging, a geroscience feasibility study. Transl Med Aging. 2023;7:109–117.
    • Grant Information:
      I01 BX005717 United States BX BLRD VA; P30 AG013319 United States AG NIA NIH HHS; R01 AG068293 United States AG NIA NIH HHS
    • Contributed Indexing:
      Keywords: aging; diseases; frailty; inflammation; senescence; senotherapeutics
    • Publication Date:
      Date Created: 20240306 Date Completed: 20240409 Latest Revision: 20240629
    • Publication Date:
      20240629
    • Accession Number:
      10.1111/joim.13775
    • Accession Number:
      38446642