The acid sphingomyelinase inhibitor imipramine enhances the release of UV photoproduct-containing DNA in small extracellular vesicles in UVB-irradiated human skin.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: American Society for Photobiology Country of Publication: United States NLM ID: 0376425 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1751-1097 (Electronic) Linking ISSN: 00318655 NLM ISO Abbreviation: Photochem Photobiol Subsets: MEDLINE
    • Publication Information:
      Publication: <2004->: Lawrence KS : American Society for Photobiology
      Original Publication: Augusta, GA: American Society for Photobiology, <1996->
    • Subject Terms:
    • Abstract:
      Nucleic acids, lipids, and other cell components can be found within different types of extracellular vesicles (EVs), which include apoptotic bodies (ABs), large extracellular vesicles (LEVs), and small extracellular vesicles (SEVs). Release of LEVs from cells can be reduced by genetic or pharmacological inhibition of the enzyme acid sphinogomyelinase (aSMase), and indeed several studies have demonstrated a role for the clinically approved aSMase inhibitor imipramine in blocking LEV release, including in response to UVB exposure. Given that exposure of keratinocytes to UVB radiation results in the generation of UVR photoproducts in DNA that can subsequently be found in association with ABs and SEVs, we examined how imipramine impacts the release of extracellular DNA containing UVR photoproducts at an early time point after UVR exposure. Using several different model systems, including cultured keratinocytes in vitro, discarded human surgical skin ex vivo, and skin biopsies obtained from treated human subjects, these pilot studies suggest that imipramine treatment stimulates the release of CPD-containing, SEV-associated DNA. These surprising findings indicate that LEV and SEV generation pathways could be linked in UVB-irradiated cells and that imipramine may exacerbate the systemic effects of extracellular UVR-damaged DNA throughout the body.
      (© 2024 The Authors. Photochemistry and Photobiology published by Wiley Periodicals LLC on behalf of American Society for Photobiology.)
    • References:
      Kalluri R, LeBleu VS. The biology, function, and biomedical applications of exosomes. Science. 2020;367:eaau697. doi:10.1126/science.aau6977.
      Flemming JP, Wermuth PJ, Mahoney MG. Extracellular vesicles in the skin microenvironment: emerging roles as biomarkers and therapeutic tools in dermatologic health and disease. J Invest Dermatol. 2023;144:225‐233. doi:10.1016/j.jid.2023.08.024.
      Wäster P, Eriksson I, Vainikka L, Rosdahl I, Öllinger K. Extracellular vesicles are transferred from melanocytes to keratinocytes after UVA irradiation. Sci Rep. 2016;6:27890. doi:10.1038/srep27890.
      Wang J, Ma W, Si C, et al. Exosome‐mediated miR‐4655–3p contributes to UV radiation‐induced bystander effects. Exp Cell Res. 2022;418:113247. doi:10.1016/j.yexcr.2022.113247.
      Sha J, Arbesman J, Harter ML. Premature senescence in human melanocytes after exposure to solar UVR: an exosome and UV‐miRNA connection. Pigment Cell Melanoma Res. 2020;33:671‐684. doi:10.1111/pcmr.12888.
      Bihl JC, Rapp CM, Chen Y, Travers JB. UVB generates microvesicle particle release in part due to platelet‐activating factor signaling. Photochem Photobiol. 2016;92:503‐506. doi:10.1111/php.12577.
      Thapa P, Bhadri S, Borchers C, et al. Low UVB fluences augment microvesicle particle generation in keratinocytes. Photochem Photobiol. 2022;98:248‐253. doi:10.1111/php.13495.
      Fahy K, Liu L, Rapp CM, et al. UVB‐generated microvesicle particles: a novel pathway by which a skin‐specific stimulus could exert systemic effects. Photochem Photobiol. 2017;93:937‐942. doi:10.1111/php.12703.
      Liu L, Awoyemi AA, Fahy KE, et al. Keratinocyte‐derived microvesicle particles mediate ultraviolet B radiation–induced systemic immunosuppression. J Clin Invest. 2021;131:e144963. doi:10.1172/JCI144963.
      Marathe GK, Johnson C, Billings SD, et al. Ultraviolet B radiation generates platelet‐activating factor‐like phospholipids underlying cutaneous damage. J Biol Chem. 2005;280:35448‐35457. doi:10.1074/jbc.M503811200.
      Thakur BK, Zhang H, Becker A, et al. Double‐stranded DNA in exosomes: a novel biomarker in cancer detection. Cell Res. 2014;24:766‐769. doi:10.1038/cr.2014.44.
      Takahashi A, Okada R, Nagao K, et al. Exosomes maintain cellular homeostasis by excreting harmful DNA from cells. Nat Commun. 2017;8:15287. doi:10.1038/ncomms15287.
      Ariyoshi K, Miura T, Kasai K, Fujishima Y, Nakata A, Yoshida M. Radiation‐induced bystander effect is mediated by mitochondrial DNA in exosome‐like vesicles. Sci Rep. 2019;9:9103. doi:10.1038/s41598-019-45669-z.
      Carpenter MA, Ginugu M, Khan S, Kemp MG. DNA containing Cyclobutane pyrimidine dimers is released from UVB‐irradiated keratinocytes in a caspase‐dependent manner. J Invest Dermatol. 2022;142:3062‐3070.e3. doi:10.1016/j.jid.2022.04.030.
      McGlone CL, Christian L, Schmeusser B, et al. Evidence for systemic reactive oxygen species in UVB‐mediated microvesicle formation. Photochem Photobiol. 2022;98:242‐247. doi:10.1111/php.13494.
      Kim JH, Lee CH, Baek MC. Dissecting exosome inhibitors: therapeutic insights into small‐molecule chemicals against cancer. Exp Mol Med. 2022;54:1833‐1843. doi:10.1038/s12276-022-00898-7.
      Bianco F, Perrotta C, Novellino L, et al. Acid sphingomyelinase activity triggers microparticle release from glial cells. EMBO J. 2009;28:1043‐1054. doi:10.1038/emboj.2009.45.
      Arenz C. Small molecule inhibitors of acid sphingomyelinase. Cell Physiol Biochem. 2010;26:1‐8. doi:10.1159/000315100.
      Bhadra S, Thapa P, Chen Y, et al. Evidence for microvesicle particles in UVB‐mediated IL‐8 generation in keratinocytes. J Clin Investig Dermatol. 2021;9:1‐4. doi:10.13188/2373-1044.1000076.
      Liu L, Fahy KE, Awoyemi AA, et al. Thermal burn injury generates bioactive microvesicles: evidence for a novel transport mechanism for the lipid mediator platelet‐activating factor (PAF) that involves subcellular particles and the PAF receptor. J Immunol. 2020;205:193‐201. doi:10.4049/jimmunol.1901393.
      Oyebanji OA, Brewer C, Bayless S, et al. Topical photodynamic therapy generates bioactive microvesicle particles: evidence for a pathway involved in immunosuppressive effects. J Invest Dermatol. 2023;143:1279‐1288.e9. doi:10.1016/j.jid.2022.12.018.
      Thyagarajan A, Awasthi K, Rapp CM, et al. Topical application of gemcitabine generates microvesicle particles in human and murine skin. Biofactors. 2022;48:1295‐1304. doi:10.1002/biof.1924.
      Kosgodage US, Trindade RP, Thompson PR, Inal JM, Lange S. Chloramidine/bisindolylmaleimide‐I‐mediated inhibition of exosome and microvesicle release and enhanced efficacy of cancer chemotherapy. Int J Mol Sci. 2017;18:1‐12. doi:10.3390/ijms18051007.
      Duvvuri B, Lood C. Cell‐free DNA as a biomarker in autoimmune rheumatic diseases. Front Immunol. 2019;10:502. doi:10.3389/fimmu.2019.00502.
      Arneth B. Systemic lupus erythematosus and DNA degradation and elimination defects. Front Immunol. 2019;10:1697. doi:10.3389/fimmu.2019.01697.
      Lou H, Pickering MC. Extracellular DNA and autoimmune diseases. Cell Mol Immunol. 2018;15:746‐755. doi:10.1038/cmi.2017.136.
      Cvammen W, Kemp MG. Flavonoid nobiletin exhibits differential effects on cell viability in keratinocytes exposed to UVA versus UVB radiation. Photochem Photobiol. 2022;98:1372‐1378. doi:10.1111/php.13625.
      Carpenter MA, Yerrapragada S, Alex A, Kemp MG. Protocol for Immunodot Blot Detection of UVB Photoproducts in Extracellular DNA. STAR Protoc in press; 2024.
      Albouz S, Hauw JJ, Berwald‐Netter Y, Boutry JM, Bourdon R, Baumann N. Tricyclic antidepressants induce sphingomyelinase deficiency in fibroblast and neuroblastoma cell cultures. Biomedicine. 1981;35:218‐220.
      Xia Z, Karlsson H, Depierre JW, Nässberger L. Tricyclic antidepressants induce apoptosis in human T lymphocytes. Int J Immunopharmacol. 1998;19:645‐654. doi:10.1016/S0192-0561(97)00020-9.
      Xia Z, Bergstrand A, DePierre JW, Nässberger L. The antidepressants imipramine, clomipramine, and citalopram induce apoptosis in human acute myeloid leukemia HL‐60 cells via caspase‐3 activation. J Biochem Mol Toxicol. 1999;13:338‐347. doi:10.1002/(sici)1099-0461(1999)13:6<338::aid-jbt8>3.3.co;2-z.
      Piccotti JR, LaGattuta MS, Knight SA, Gonzales AJ, Bleavins MR. Induction of apoptosis by cationic amphiphilic drugs amiodarone and imipramine. Drug Chem Toxicol. 2005;28:117‐133. doi:10.1081/DCT-39743.
      Park SJ, Kim JM, Kim J, et al. Molecular mechanisms of biogenesis of apoptotic exosome‐like vesicles and their roles as damage‐associated molecular patterns. Proc Natl Acad Sci USA. 2018;115:E11721‐E11730. doi:10.1073/pnas.1811432115.
      Malkin EZ, Bratman SV. Bioactive DNA from extracellular vesicles and particles. Cell Death Dis. 2020;11:584. doi:10.1038/s41419-020-02803-4.
      Gehrke N, Mertens C, Zillinger T, et al. Oxidative damage of DNA confers resistance to cytosolic nuclease TREX1 degradation and potentiates STING‐dependent immune sensing. Immunity. 2013;39:482‐495. doi:10.1016/j.immuni.2013.08.004.
      Kim SH, Kim GH, Kemp MG, Choi J‐H. TREX1 degrades the 3′ end of the small DNA oligonucleotide products of nucleotide excision repair in human cells. Nucleic Acids Res. 2022;50:3974‐3984. doi:10.1093/nar/gkac214.
      Klein B, Kunz M. Current concepts of photosensitivity in cutaneous lupus erythematosus. Front Med (Lausanne). 2022;9:939594. doi:10.3389/fmed.2022.939594.
      Bernard JJ, Gallo RL, Krutmann J. Photoimmunology: how ultraviolet radiation affects the immune system. Nat Rev Immunol. 2019;19:688‐701. doi:10.1038/s41577-019-0185-9.
    • Grant Information:
      R01HL062996 United States HL NHLBI NIH HHS; R01GM230583 United States GM NIGMS NIH HHS; R01ES031087 United States ES NIEHS NIH HHS; R01HL062996 United States HL NHLBI NIH HHS; R01GM230583 United States GM NIGMS NIH HHS; R01ES031087 United States ES NIEHS NIH HHS; I01BX00853 U.S. Department of Veterans Affairs; I01CX002241 U.S. Department of Veterans Affairs
    • Contributed Indexing:
      Keywords: DNA damage; UV radiation; apoptosis; cell biology; exosome; extracellular vesicles; pharmacology; skin biology
    • Accession Number:
      OGG85SX4E4 (Imipramine)
      EC 3.1.4.12 (Sphingomyelin Phosphodiesterase)
      9007-49-2 (DNA)
      0 (Enzyme Inhibitors)
    • Publication Date:
      Date Created: 20240304 Date Completed: 20241116 Latest Revision: 20241116
    • Publication Date:
      20241118
    • Accession Number:
      10.1111/php.13932
    • Accession Number:
      38433456