Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Modeling COVID-19 spread using multi-agent simulation with small-world network approach.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Author(s): Fan Q;Fan Q; Li Q; Li Q; Chen Y; Chen Y; Chen Y; Tang J; Tang J
- Source:
BMC public health [BMC Public Health] 2024 Mar 02; Vol. 24 (1), pp. 672. Date of Electronic Publication: 2024 Mar 02.
- Publication Type:
Journal Article
- Language:
English
- Additional Information
- Source:
Publisher: BioMed Central Country of Publication: England NLM ID: 100968562 Publication Model: Electronic Cited Medium: Internet ISSN: 1471-2458 (Electronic) Linking ISSN: 14712458 NLM ISO Abbreviation: BMC Public Health Subsets: MEDLINE
- Publication Information:
Original Publication: London : BioMed Central, [2001-
- Subject Terms:
- Abstract:
Background: The rapid global spread of COVID-19 has seriously impacted people's daily lives and the social economy while also posing a threat to their lives. The analysis of infectious disease transmission is of significant importance for the rational allocation of epidemic prevention and control resources, the management of public health emergencies, and the improvement of future public health systems.
Methods: We propose a spatiotemporal COVID-19 transmission model with a neighborhood as an agent unit and an urban spatial network with long and short edge connections. The spreading model includes a network of defined agent attributes, transformation rules, and social relations and a small world network representing agents' social relations. Parameters for each stage are fitted by the Runge-Kutta method combined with the SEIR model. Using the NetLogo development platform, accurate dynamic simulations of the spatial and temporal evolution of the early epidemic were achieved.
Results: Experimental results demonstrate that the fitted curves from the four stages agree with actual data, with only a 12.27% difference between the average number of infected agents and the actual number of infected agents after simulating 1 hundred times. Additionally, the model simulates and compares different "city closure" scenarios. The results showed that implementing a 'lockdown' 10 days earlier would lead to the peak number of infections occurring 7 days earlier than in the normal scenario, with a reduction of 40.35% in the total number of infections.
Discussion: Our methodology emphasizes the crucial role of timely epidemic interventions in curbing the spread of infectious diseases, notably in the predictive assessment and evaluation of lockdown strategies. Furthermore, this approach adeptly forecasts the influence of varying intervention timings on peak infection rates and total case numbers, accurately reflecting real-world virus transmission patterns. This highlights the importance of proactive measures in diminishing epidemic impacts. It furnishes a robust framework, empowering policymakers to refine epidemic response strategies based on a synthesis of predictive modeling and empirical data.
(© 2024. The Author(s).)
- References:
J Prim Care Community Health. 2020 Jan-Dec;11:2150132720969483. (PMID: 33213266)
Health Place. 2021 Nov;72:102694. (PMID: 34649210)
Results Phys. 2021 Jan;20:103716. (PMID: 33520624)
Int J Environ Res Public Health. 2020 Oct 23;17(21):. (PMID: 33113936)
Sci Total Environ. 2020 Nov 20;744:140929. (PMID: 32687995)
Front Public Health. 2022 Oct 18;10:1033432. (PMID: 36330112)
Int J Environ Res Public Health. 2022 Feb 12;19(4):. (PMID: 35206260)
Entropy (Basel). 2022 Jun 15;24(6):. (PMID: 35741552)
J Theor Biol. 2019 Feb 7;462:122-133. (PMID: 30423306)
Appl Netw Sci. 2020;5(1):35. (PMID: 32835088)
Sci Rep. 2021 Feb 12;11(1):3717. (PMID: 33580113)
Results Phys. 2021 Jun;25:104289. (PMID: 33996402)
Proc Math Phys Eng Sci. 2021 Jan;477(2245):20200604. (PMID: 33633491)
Nature. 1998 Jun 4;393(6684):440-2. (PMID: 9623998)
Int J Environ Res Public Health. 2022 Jun 30;19(13):. (PMID: 35805721)
Jpn J Stat Data Sci. 2022;5(1):339-361. (PMID: 35729993)
J Thorac Dis. 2020 Mar;12(3):165-174. (PMID: 32274081)
Acta Biotheor. 2016 Mar;64(1):65-84. (PMID: 26566620)
Healthc Inform Res. 2019 Jul;25(3):182-192. (PMID: 31406610)
Infect Dis Model. 2021;6:643-663. (PMID: 33869909)
Epidemics. 2020 Sep;32:100395. (PMID: 32405321)
Epidemics. 2018 Mar;22:43-49. (PMID: 28256420)
Z Gesundh Wiss. 2023;31(2):221-228. (PMID: 33824850)
Nonlinear Dyn. 2023;111(2):1947-1969. (PMID: 36193120)
PeerJ Comput Sci. 2023 Nov 20;9:e1693. (PMID: 38077607)
Results Phys. 2021 Jun;25:104283. (PMID: 33996400)
Nonlinear Dyn. 2022;107(1):1313-1327. (PMID: 34728898)
Science. 1999 Oct 15;286(5439):509-12. (PMID: 10521342)
Sci Bull (Beijing). 2020 Aug 15;65(15):1297-1305. (PMID: 32373394)
Biomech Model Mechanobiol. 2020 Dec;19(6):2179-2193. (PMID: 32342242)
Int J Environ Res Public Health. 2019 Nov 25;16(23):. (PMID: 31775236)
Science. 2003 Aug 8;301(5634):827-9. (PMID: 12907800)
- Contributed Indexing:
Keywords: Agent; COVID-19; Small world networks; Social relationship; Spatiotemporal propagation
- Publication Date:
Date Created: 20240302 Date Completed: 20240305 Latest Revision: 20240306
- Publication Date:
20240306
- Accession Number:
PMC10909264
- Accession Number:
10.1186/s12889-024-18157-x
- Accession Number:
38431581
No Comments.