Mitochondrial Dysfunction due to Novel COQ8A Variation with Poor Response to CoQ10 Treatment: A Comprehensive Study and Review of Literatures.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer Country of Publication: United States NLM ID: 101089443 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1473-4230 (Electronic) Linking ISSN: 14734222 NLM ISO Abbreviation: Cerebellum Subsets: MEDLINE
    • Publication Information:
      Publication: <2006->: New York : Springer
      Original Publication: London : Martin Dunitz, c2002-
    • Subject Terms:
    • Abstract:
      COQ8A plays an important role in the biosynthesis of coenzyme Q10 (CoQ10), and variations in COQ8A gene are associated with primary CoQ10 deficiency-4 (COQ10D4), also known as COQ8A-ataxia. The current understanding of the association between the specific variant type, the severity of CoQ10 deficiency, and the degree of oxidative stress in individuals with primary CoQ10 deficiencies remains uncertain. Here we provide a comprehensive analysis of the clinical and genetic characteristics of an 18-year-old patient with COQ8A-ataxia, who exhibited novel compound heterozygous variants (c.1904_1906del and c.637C > T) in the COQ8A gene. These variants reduced the expression levels of COQ8A and mitochondrial proteins in the patient's muscle and skin fibroblast samples, contributed to mitochondrial respiration deficiency, increased ROS production and altered mitochondrial membrane potential. It is worth noting that the optimal treatment for COQ8A-ataxia remains uncertain. Presently, therapy consists of CoQ10 supplementation, however, it did not yield significant improvement in our patient's symptoms. Additionally, we reviewed the response of CoQ10 supplementation and evolution of patients in previous literatures in detail. We found that only half of patients could got notable improvement in ataxia. This research aims to expand the genotype-phenotype spectrum of COQ10D4, address discrepancies in previous reviews regarding the effectiveness of CoQ10 in these disorders, and help to establish a standardized treatment protocol for COQ8A-ataxia.
      (© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
    • References:
      Montero R, Pineda M, Aracil A, Vilaseca MA, Briones P, Sánchez-Alcázar JA, Navas P, Artuch R. Clinical, biochemical and molecular aspects of cerebellar ataxia and Coenzyme Q10 deficiency. Cerebellum. 2007;6:118–22. https://doi.org/10.1080/14734220601021700 . (PMID: 10.1080/1473422060102170017510911)
      Quinzii CM, López LC, Naini A, DiMauro S, Hirano M. Human CoQ10 deficiencies. BioFactors. 2008;32:113–8. https://doi.org/10.1002/biof.5520320113 . (PMID: 10.1002/biof.5520320113190961063625975)
      Laredj LN, Licitra F, Puccio HM. The molecular genetics of coenzyme Q biosynthesis in health and disease. Biochimie. 2014;100:78–87. https://doi.org/10.1016/j.biochi.2013.12.006 . (PMID: 10.1016/j.biochi.2013.12.00624355204)
      Caglayan AO, Gumus H, Sandford E, Kubisiak TL, Ma Q, Ozel AB, Per H, Li JZ, Shakkottai VG, Burmeister M. COQ4 Mutation Leads to Childhood-Onset Ataxia Improved by CoQ10 Administration. Cerebellum. 2019;18:665–9. https://doi.org/10.1007/s12311-019-01011-x . (PMID: 10.1007/s12311-019-01011-x308478266536000)
      Manning G, Whyte DB, Martinez R, Hunter T, Sudarsanam S. The protein kinase complement of the human genome. Science. 2002;298:1912–34. https://doi.org/10.1126/science.1075762 . (PMID: 10.1126/science.107576212471243)
      Lagier-Tourenne C, Tazir M, López LC, Quinzii CM, Assoum M, Drouot N, Busso C, Makri S, Ali-Pacha L, Benhassine T, et al. ADCK3, an ancestral kinase, is mutated in a form of recessive ataxia associated with coenzyme Q10 deficiency. Am J Hum Genet. 2008;82:661–72. https://doi.org/10.1016/j.ajhg.2007.12.024 . (PMID: 10.1016/j.ajhg.2007.12.024183190742427193)
      Asquith CRM, Murray NH, Pagliarini DJ. ADCK3/COQ8A: the choice target of the UbiB protein kinase-like family. Nat Rev Drug Discov. 2019;18:815. https://doi.org/10.1038/d41573-019-00158-w . (PMID: 10.1038/d41573-019-00158-w316731287062282)
      Stefely JA, Reidenbach AG, Ulbrich A, Oruganty K, Floyd BJ, Jochem A, Saunders JM, Johnson IE, Minogue CE, Wrobel RL, et al. Mitochondrial ADCK3 employs an atypical protein kinase-like fold to enable coenzyme Q biosynthesis. Mol Cell. 2015;57:83–94. https://doi.org/10.1016/j.molcel.2014.11.002 . (PMID: 10.1016/j.molcel.2014.11.00225498144)
      Paprocka J, Nowak M, Chuchra P, Śmigiel R. COQ8A-Ataxia as a Manifestation of Primary Coenzyme Q Deficiency. Metabolites. 2022;12:955. https://doi.org/10.3390/metabo12100955 . (PMID: 10.3390/metabo12100955362958579608955)
      Shalata A, Edery M, Habib C, Genizi J, Mahroum M, Khalaily L, Assaf N, Segal I, Abed El Rahim H, Shapira H, et al. Primary Coenzyme Q deficiency Due to Novel ADCK3 Variants, Studies in Fibroblasts and Review of Literature. Neurochem Res. 2019;44:2372–84. https://doi.org/10.1007/s11064-019-02786-5 . (PMID: 10.1007/s11064-019-02786-530968303)
      Manolaras I, Del Bondio A, Griso O, Reutenauer L, Eisenmann A, Habermann BH, Puccio H. Mitochondrial dysfunction and calcium dysregulation in COQ8A-ataxia Purkinje neurons are rescued by CoQ10 treatment. Brain. 2023;146:3836–50. https://doi.org/10.1093/brain/awad099 . (PMID: 10.1093/brain/awad09936960552)
      Ji K, Zheng J, Sun B, Liu F, Shan J, Li D, Luo YB, Zhao Y, Yan C. Novel mitochondrial C15620A variant may modulate the phenotype of mitochondrial G11778A mutation in a Chinese family with Leigh syndrome. Neuromolecular Med. 2014;16:119–26. https://doi.org/10.1007/s12017-013-8264-8 . (PMID: 10.1007/s12017-013-8264-824062162)
      Rittié L, Fisher GJ. Isolation and culture of skin fibroblasts. Methods Mol Med. 2005;117:83–98. https://doi.org/10.1385/1-59259-940-0:083 . (PMID: 10.1385/1-59259-940-0:08316118447)
      Qian W, Kumar N, Roginskaya V, Fouquerel E, Opresko PL, Shiva S, Watkins SC, Kolodieznyi D, Bruchez MP, Van Houten B. Chemoptogenetic damage to mitochondria causes rapid telomere dysfunction. Proc Natl Acad Sci U S A. 2019;116:18435–44. https://doi.org/10.1073/pnas.1910574116 . (PMID: 10.1073/pnas.1910574116314516406744920)
      Zhao X, Cui L, Xiao Y, Mao Q, Aishanjiang M, Kong W, Liu Y, Chen H, Hong F, Jia Z, et al. Hypertension-associated mitochondrial DNA 4401A>G mutation caused the aberrant processing of tRNAMet, all 8 tRNAs and ND6 mRNA in the light-strand transcript. Nucleic Acids Res. 2019;47:10340–56. https://doi.org/10.1093/nar/gkz742 . (PMID: 10.1093/nar/gkz742315047696821173)
      Zhu L, Yuan Y, Yuan L, Li L, Liu F, Liu J, Chen Y, Lu Y, Cheng J. Activation of TFEB-mediated autophagy by trehalose attenuates mitochondrial dysfunction in cisplatin-induced acute kidney injury. Theranostics. 2020;10:5829–44. https://doi.org/10.7150/thno.44051 . (PMID: 10.7150/thno.44051324834227255003)
      Robinson KM, Janes MS, Beckman JS. The selective detection of mitochondrial superoxide by live cell imaging. Nat Protoc. 2008;3:941–7. https://doi.org/10.1038/nprot.2008.56 . (PMID: 10.1038/nprot.2008.5618536642)
      Sivandzade F, Bhalerao A, Cucullo L. Analysis of the mitochondrial membrane potential using the cationic JC-1 dye as a sensitive fluorescent probe. Bio Protoc. 2019;9(1):e3128. https://doi.org/10.21769/BioProtoc.3128 . (PMID: 10.21769/BioProtoc.3128306877736343665)
      Mollet J, Delahodde A, Serre V, Chretien D, Schlemmer D, Lombes A, Boddaert N, Desguerre I, de Lonlay P, de Baulny HO, et al. CABC1 gene mutations cause ubiquinone deficiency with cerebellar ataxia and seizures. Am J Hum Genet. 2008;82:623–30. https://doi.org/10.1016/j.ajhg.2007.12.022 . (PMID: 10.1016/j.ajhg.2007.12.022183190722427298)
      Reidenbach AG, Kemmerer ZA, Aydin D, Jochem A, McDevitt MT, Hutchins PD, Stark JL, Stefely JA, Reddy T, Hebert AS, et al. Conserved Lipid and Small-Molecule Modulation of COQ8 Reveals Regulation of the Ancient Kinase-like UbiB Family. Cell Chem Biol. 2018;25:154-165.e111. https://doi.org/10.1016/j.chembiol.2017.11.001 . (PMID: 10.1016/j.chembiol.2017.11.00129198567)
      Stefely JA, Licitra F, Laredj L, Reidenbach AG, Kemmerer ZA, Grangeray A, Jaeg-Ehret T, Minogue CE, Ulbrich A, Hutchins PD, et al. Cerebellar Ataxia and Coenzyme Q Deficiency through Loss of Unorthodox Kinase Activity. Mol Cell. 2016;63:608–20. https://doi.org/10.1016/j.molcel.2016.06.030 . (PMID: 10.1016/j.molcel.2016.06.030274992945012427)
      Barca E, Musumeci O, Montagnese F, Marino S, Granata F, Nunnari D, Peverelli L, DiMauro S, Quinzii CM, Toscano A. Cerebellar ataxia and severe muscle CoQ10 deficiency in a patient with a novel mutation in ADCK3. Clin Genet. 2016;90:156–60. https://doi.org/10.1111/cge.12742 . (PMID: 10.1111/cge.12742268184664950673)
      Arenas-Jal M, Suñé-Negre JM, García-Montoya E. Coenzyme Q10 supplementation: Efficacy, safety, and formulation challenges. Compr Rev Food Sci Food Saf. 2020;19:574–94. https://doi.org/10.1111/1541-4337.12539 . (PMID: 10.1111/1541-4337.1253933325173)
      Mignot C, Apartis E, Durr A, Marques Lourenço C, Charles P, Devos D, Moreau C, de Lonlay P, Drouot N, Burglen L, et al. Phenotypic variability in ARCA2 and identification of a core ataxic phenotype with slow progression. Orphanet J Rare Dis. 2013;8:173. https://doi.org/10.1186/1750-1172-8-173 . (PMID: 10.1186/1750-1172-8-173241648733843540)
      Marcoff L, Thompson PD. The role of coenzyme Q10 in statin-associated myopathy: a systematic review. J Am Coll Cardiol. 2007;49:2231–7. https://doi.org/10.1016/j.jacc.2007.02.049 . (PMID: 10.1016/j.jacc.2007.02.04917560286)
      Traschütz A, Schirinzi T, Laugwitz L, Murray NH, Bingman CA, Reich S, Kern J, Heinzmann A, Vasco G, Bertini E, et al. Clinico-Genetic, Imaging and Molecular Delineation of COQ8A-Ataxia: A Multicenter Study of 59 Patients. Ann Neurol. 2020;88:251–63. https://doi.org/10.1002/ana.25751 . (PMID: 10.1002/ana.25751323377717877690)
      Blumkin L, Leshinsky-Silver E, Zerem A, Yosovich K, Lerman-Sagie T, Lev D. Heterozygous Mutations in the ADCK3 Gene in Siblings with Cerebellar Atrophy and Extreme Phenotypic Variability. JIMD Rep. 2014;12:103–7. https://doi.org/10.1007/8904_2013_251 . (PMID: 10.1007/8904_2013_25124048965)
      Hikmat O, Tzoulis C, Knappskog PM, Johansson S, Boman H, Sztromwasser P, Lien E, Brodtkorb E, Ghezzi D, Bindoff LA. ADCK3 mutations with epilepsy, stroke-like episodes and ataxia: a POLG mimic? Eur J Neurol. 2016;23:1188–94. https://doi.org/10.1111/ene.13003 . (PMID: 10.1111/ene.1300327106809)
      Horvath R, Czermin B, Gulati S, Demuth S, Houge G, Pyle A, Dineiger C, Blakely EL, Hassani A, Foley C, et al. Adult-onset cerebellar ataxia due to mutations in CABC1/ADCK3. J Neurol Neurosurg Psychiatry. 2012;83:174–8. https://doi.org/10.1136/jnnp-2011-301258 . (PMID: 10.1136/jnnp-2011-30125822036850)
      Jacobsen JC, Whitford W, Swan B, Taylor J, Love DR, Hill R, Molyneux S, George PM, Mackay R, Robertson SP, et al. Compound Heterozygous Inheritance of Mutations in Coenzyme Q8A Results in Autosomal Recessive Cerebellar Ataxia and Coenzyme Q(10) Deficiency in a Female Sib-Pair. JIMD Rep. 2018;42:31–6. https://doi.org/10.1007/8904_2017_73 . (PMID: 10.1007/8904_2017_7329159460)
      Chang A, Ruiz-Lopez M, Slow E, Tarnopolsky M, Lang AE, Munhoz RP. ADCK3-related Coenzyme Q10 Deficiency: A Potentially Treatable Genetic Disease. Mov Disord Clin Pract. 2018;5:635–9. https://doi.org/10.1002/mdc3.12667 . (PMID: 10.1002/mdc3.12667306372856277365)
      Schirinzi T, Favetta M, Romano A, Sancesario A, Summa S, Minosse S, Zanni G, Castelli E, Bertini E, Petrarca M, et al. One-year outcome of coenzyme Q10 supplementation in ADCK3 ataxia (ARCA2). Cerebellum Ataxias. 2019;6:15. https://doi.org/10.1186/s40673-019-0109-2 . (PMID: 10.1186/s40673-019-0109-2318902316916514)
      Uccella S, Pisciotta L, Severino M, Bertini E, Giacomini T, Zanni G, Prato G, De Grandis E, Nobili L, Mancardi MM. Photoparoxysmal response in ADCK3 autosomal recessive ataxia: a case report and literature review. Epileptic Disord. 2021;23:153–60. https://doi.org/10.1684/epd.2021.1243 . (PMID: 10.1684/epd.2021.124333622667)
      Coutelier M, Hammer MB, Stevanin G, Monin ML, Davoine CS, Mochel F, Labauge P, Ewenczyk C, Ding J, Gibbs JR, et al. Efficacy of Exome-Targeted Capture Sequencing to Detect Mutations in Known Cerebellar Ataxia Genes. JAMA Neurol. 2018;75:591–9. https://doi.org/10.1001/jamaneurol.2017.5121 . (PMID: 10.1001/jamaneurol.2017.5121294822235885259)
      Zhang L, Ashizawa T, Peng D. Primary coenzyme Q10 deficiency due to COQ8A gene mutations. Mol Genet Genomic Med. 2020;8:e1420. https://doi.org/10.1002/mgg3.1420 . (PMID: 10.1002/mgg3.1420327439827549598)
      Hojabri M, Gilani A, Irilouzadian R, Nejad Biglari H, Sarmadian R. Adolescence Onset Primary Coenzyme Q10 Deficiency With Rare CoQ8A Gene Mutation: A Case Report and Review of Literature. Clin Med Insights Case Rep. 2023;16:11795476231188060. https://doi.org/10.1177/11795476231188061 . (PMID: 10.1177/117954762311880613747668210354825)
      Galosi S, Barca E, Carrozzo R, Schirinzi T, Quinzii CM, Lieto M, Vasco G, Zanni G, Di Nottia M, Galatolo D, et al. Dystonia-Ataxia with early handwriting deterioration in COQ8A mutation carriers: A case series and literature review. Parkinsonism Relat Disord. 2019;68:8–16. https://doi.org/10.1016/j.parkreldis.2019.09.015 . (PMID: 10.1016/j.parkreldis.2019.09.01531621627)
      Cotta A, Alston CL, Baptista-Junior S, Paim JF, Carvalho E, Navarro MM, Appleton M, Ng YS, Valicek J, da-Cunha-Junior AL, et al. Early-onset coenzyme Q10 deficiency associated with ataxia and respiratory chain dysfunction due to novel pathogenic COQ8A variants, including a large intragenic deletion. Jimd Rep. 2020;54:45–53. https://doi.org/10.1002/jmd2.12107 . (PMID: 10.1002/jmd2.12107326853507358671)
      Ehrenhaus Masotta N, Höcht C, Contin M, Lucangioli S, Rojas AM, Tripodi VP. Bioavailability of coenzyme Q(10) loaded in an oleogel formulation for oral therapy: Comparison with a commercial-grade solid formulation. Int J Pharm. 2020;582:119315. https://doi.org/10.1016/j.ijpharm.2020.119315 . (PMID: 10.1016/j.ijpharm.2020.11931532283195)
      Auré K, Benoist JF, Ogier de Baulny H, Romero NB, Rigal O, Lombès A. Progression despite replacement of a myopathic form of coenzyme Q10 defect. Neurology. 2004;63:727–9. https://doi.org/10.1212/01.wnl.0000134607.76780.b2 . (PMID: 10.1212/01.wnl.0000134607.76780.b215326254)
    • Grant Information:
      No.82301590 the National Natural Science Foundation of China; No.82071412 the National Natural Science Foundation of China; No.82171394 the National Natural Science Foundation of China; 2023M742116 China Postdoctoral Science Foundation; ZR2023QH106 Natural Science Foundation of Shandong Province; SDBX2022061 Shandong Provincial Postdoctoral Innovation Talent Support Program; No.2021YFC2700904 Grants from the National Key R&D Program of China; 20-3-4-42-nsh People's Benefit Project of Science and Technology in Qingdao
    • Contributed Indexing:
      Keywords: COQ8A gene; Cerebellar ataxia; CoQ10; Mitochondrial; Primary CoQ10 deficiency
    • Accession Number:
      1339-63-5 (Ubiquinone)
      EJ27X76M46 (coenzyme Q10)
      0 (COQ8A protein, human)
      0 (Mitochondrial Proteins)
    • Subject Terms:
      Coenzyme Q10 Deficiency
    • Publication Date:
      Date Created: 20240301 Date Completed: 20241018 Latest Revision: 20241022
    • Publication Date:
      20241022
    • Accession Number:
      10.1007/s12311-024-01671-4
    • Accession Number:
      38429489