Examining the association between serum galactose-deficient IgA1 and primary IgA nephropathy: a systematic review and meta-analysis.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer Country of Publication: Italy NLM ID: 9012268 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1724-6059 (Electronic) Linking ISSN: 11218428 NLM ISO Abbreviation: J Nephrol Subsets: MEDLINE
    • Publication Information:
      Publication: 2014- : Heidelberg : Springer
      Original Publication: Rome : Acta Medica,
    • Subject Terms:
    • Abstract:
      Background: IgA nephropathy (IgAN) is a common primary glomerular disease. The O-glycosylation status of IgA1 plays a crucial role in disease pathophysiology. The level of poorly-O-galactosylated IgA1, or galactose-deficient IgA1 (Gd-IgA1), has also been identified as a potential biomarker in IgAN. We sought to examine the value of serum Gd-IgA1 as a biomarker in IgAN, by investigating its association with clinical, laboratory, and histopathological features of IgAN.
      Methods: The review followed Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) recommendations and was registered in PROSPERO (CRD42021287423). The literature search was conducted in PubMed, Web of Science, Cochrane, and Scopus, and the selected articles were evaluated for eligibility based on predefined criteria. The methodological quality of the studies was assessed using the Newcastle-Ottawa Scale. Statistical analysis was performed to calculate effect sizes and assess heterogeneity among the studies.
      Results: This review analyzed 29 out of 1,986 studies, conducted between 2005 and 2022, with participants from multiple countries. Gd-IgA1 levels were not associated with age and gender, while associations with hypertension, hematuria, and proteinuria were inconsistent. In the meta-analyses, a correlation between serum Gd-IgA1 and estimated glomerular filtration rate was identified, however, the relationships between Gd-IgA1 levels and chronic kidney disease (CKD) stage and progression to kidney failure were inconsistent.
      Conclusions: Serum Gd-IgA1 levels were not associated with validated prognostic risk factors, but were negatively correlated with kidney function. Further research in larger studies using standardized assays are needed to establish the value of Gd-IgA1 as a prognostic risk factor in IgAN.
      Competing Interests: Declarations. Conflict of interest: All authors certify that they have no affiliations with or involvement in any organization or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this manuscript. Ethical approval: Ethical approval is not applicable. This is a systematic review article. Human and animal rights: This article does not contain any studies with human participants or animals performed by any of the authors. Informed consent: For this type of study, formal consent is not required.
      (© 2024. The Author(s).)
    • References:
      Kwon CS, Daniele P, Forsythe A, Ngai C (2021) A systematic literature review of the epidemiology, health-related quality of life impact, and economic burden of immunoglobulin a nephropathy. J Health Econ Outcomes Res 8:36–45. https://doi.org/10.36469/001c.26129. (PMID: 10.36469/001c.26129346928858410133)
      Chacko B (2011) IgA nephropathy in India: what we do know. Ren Fail 33:102–107. https://doi.org/10.3109/0886022X.2010.523486. (PMID: 10.3109/0886022X.2010.52348621219216)
      Yeo SC, Goh SM, Barratt J (2019) Is immunoglobulin A nephropathy different in different ethnic populations? Nephrology (Carlton) 24:885–895. https://doi.org/10.1111/nep.13592. (PMID: 10.1111/nep.1359230977248)
      Chang S, Li X-K (2020) The role of immune modulation in pathogenesis of IgA nephropathy. Front Med (Lausanne) 7:92. https://doi.org/10.3389/fmed.2020.00092. (PMID: 10.3389/fmed.2020.0009232266276)
      Kerr MA (1990) The structure and function of human IgA. Biochem J 271:285–296. https://doi.org/10.1042/bj2710285. (PMID: 10.1042/bj271028522419151149552)
      Hiki Y, Horii A, Iwase H et al (1995) O-linked oligosaccharide on IgA1 hinge region in IgA nephropathy. Fundamental study for precise structure and possible role. Contrib Nephrol 111:73–84. (PMID: 10.1159/0004238807758349)
      Suzuki H, Moldoveanu Z, Hall S et al (2008) IgA1-secreting cell lines from patients with IgA nephropathy produce aberrantly glycosylated IgA1. J Clin Invest 118:629–639. https://doi.org/10.1172/JCI33189. (PMID: 10.1172/JCI33189181725512157566)
      Wang Y, Zhao M-H, Zhang Y-K et al (2004) Binding capacity and pathophysiological effects of IgA1 from patients with IgA nephropathy on human glomerular mesangial cells. Clin Exp Immunol 136:168–175. https://doi.org/10.1111/j.1365-2249.2004.02408.x. (PMID: 10.1111/j.1365-2249.2004.02408.x150305281809001)
      Novak J, Tomana M, Matousovic K et al (2005) IgA1-containing immune complexes in IgA nephropathy differentially affect proliferation of mesangial cells. Kidney Int 67:504–513. https://doi.org/10.1111/j.1523-1755.2005.67107.x. (PMID: 10.1111/j.1523-1755.2005.67107.x15673298)
      Floege J, Moura IC, Daha MR (2014) New insights into the pathogenesis of IgA nephropathy. Semin Immunopathol 36:431–442. https://doi.org/10.1007/s00281-013-0411-7. (PMID: 10.1007/s00281-013-0411-724442210)
      Berthelot L, Robert T, Vuiblet V et al (2015) Recurrent IgA nephropathy is predicted by altered glycosylated IgA, autoantibodies and soluble CD89 complexes. Kidney Int 88:815–822. https://doi.org/10.1038/ki.2015.158. (PMID: 10.1038/ki.2015.15826061544)
      Vuong MT, Hahn-Zoric M, Lundberg S et al (2010) Association of soluble CD89 levels with disease progression but not susceptibility in IgA nephropathy. Kidney Int 78:1281–1287. https://doi.org/10.1038/ki.2010.314. (PMID: 10.1038/ki.2010.31420811333)
      Boyd JK, Barratt J (2010) Immune complex formation in IgA nephropathy: CD89 a “saint” or a “sinner”? Kidney Int 78:1211–1213. https://doi.org/10.1038/ki.2010.365. (PMID: 10.1038/ki.2010.36521116273)
      Medjeral-Thomas NR, Cook HT, Pickering MC (2021) Complement activation in IgA nephropathy. Semin Immunopathol 43:679–690. https://doi.org/10.1007/s00281-021-00882-9. (PMID: 10.1007/s00281-021-00882-9343791758551128)
      Bartosik LP, Lajoie G, Sugar L, Cattran DC (2001) Predicting progression in IgA nephropathy. Am J Kidney Dis 38:728–735. https://doi.org/10.1053/ajkd.2001.27689. (PMID: 10.1053/ajkd.2001.2768911576875)
      Working Group of the International IgA Nephropathy Network and the Renal Pathology Society, Cattran DC, Coppo R et al (2009) The Oxford classification of IgA nephropathy: rationale, clinicopathological correlations, and classification. Kidney Int 76:534–545. https://doi.org/10.1038/ki.2009.243. (PMID: 10.1038/ki.2009.243)
      Working Group of the International IgA Nephropathy Network and the Renal Pathology Society, Roberts ISD, Cook HT et al (2009) The Oxford classification of IgA nephropathy: pathology definitions, correlations, and reproducibility. Kidney Int 76:546–556. https://doi.org/10.1038/ki.2009.168. (PMID: 10.1038/ki.2009.168)
      Barbour SJ, Coppo R, Zhang H et al (2019) Evaluating a New International Risk-Prediction Tool in IgA Nephropathy. JAMA Intern Med 179:942–952. https://doi.org/10.1001/jamainternmed.2019.0600. (PMID: 10.1001/jamainternmed.2019.0600309806536583088)
      Califf RM (2018) Biomarker definitions and their applications. Exp Biol Med (Maywood) 243:213–221. https://doi.org/10.1177/1535370217750088. (PMID: 10.1177/153537021775008829405771)
      Guo W-Y, Zhu L, Meng S-J et al (2017) Mannose-binding lectin levels could predict prognosis in IgA nephropathy. J Am Soc Nephrol 28:3175–3181. https://doi.org/10.1681/ASN.2017010076. (PMID: 10.1681/ASN.2017010076286982715661287)
      Chen P, Yu G, Zhang X et al (2019) Plasma galactose-deficient IgA1 and C3 and CKD progression in IgA nephropathy. Clin J Am Soc Nephrol 14:1458–1465. https://doi.org/10.2215/CJN.13711118. (PMID: 10.2215/CJN.13711118315112266777583)
      Kawasaki Y, Maeda R, Ohara S et al (2018) Serum IgA/C3 and glomerular C3 staining predict severity of IgA nephropathy. Pediatr Int 60:162–167. https://doi.org/10.1111/ped.13461. (PMID: 10.1111/ped.1346129178575)
      Mizerska-Wasiak M, Małdyk J, Rybi-Szumińska A et al (2015) Relationship between serum IgA/C3 ratio and severity of histological lesions using the Oxford classification in children with IgA nephropathy. Pediatr Nephrol 30:1113–1120. https://doi.org/10.1007/s00467-014-3024-z. (PMID: 10.1007/s00467-014-3024-z25549975)
      Moldoveanu Z, Wyatt RJ, Lee JY et al (2007) Patients with IgA nephropathy have increased serum galactose-deficient IgA1 levels. Kidney Int 71:1148–1154. https://doi.org/10.1038/sj.ki.5002185. (PMID: 10.1038/sj.ki.500218517342176)
      Shimozato S, Hiki Y, Odani H et al (2008) Serum under-galactosylated IgA1 is increased in Japanese patients with IgA nephropathy. Nephrol Dial Transplant 23:1931–1939. https://doi.org/10.1093/ndt/gfm913. (PMID: 10.1093/ndt/gfm91318178603)
      Lin X, Ding J, Zhu L et al (2009) Aberrant galactosylation of IgA1 is involved in the genetic susceptibility of Chinese patients with IgA nephropathy. Nephrol Dial Transpl 24:3372–3375. https://doi.org/10.1093/ndt/gfp294. (PMID: 10.1093/ndt/gfp294)
      Hastings MC, Moldoveanu Z, Julian BA et al (2010) Galactose-deficient IgA1 in African Americans with IgA nephropathy: serum levels and heritability. Clin J Am Soc Nephrol 5:2069–2074. https://doi.org/10.2215/CJN.03270410. (PMID: 10.2215/CJN.03270410206343233001782)
      Sanders JT, Hastings MC, Moldoveanu Z et al (2017) Serial galactose-deficient IgA1 levels in children with IgA nephropathy and healthy controls. Int J Nephrol 2017:8210641. https://doi.org/10.1155/2017/8210641. (PMID: 10.1155/2017/8210641293332955733148)
      Suzuki H, Yasutake J, Makita Y et al (2018) IgA nephropathy and IgA vasculitis with nephritis have a shared feature involving galactose-deficient IgA1-oriented pathogenesis. Kidney Int 93:700–705. https://doi.org/10.1016/j.kint.2017.10.019. (PMID: 10.1016/j.kint.2017.10.01929329643)
      Xu L-X, Zhao M-H (2005) Aberrantly glycosylated serum IgA1 are closely associated with pathologic phenotypes of IgA nephropathy. Kidney Int 68:167–172. https://doi.org/10.1111/j.1523-1755.2005.00390.x. (PMID: 10.1111/j.1523-1755.2005.00390.x15954905)
      Camilla R, Suzuki H, Daprà V et al (2011) Oxidative stress and galactose-deficient IgA1 as markers of progression in IgA nephropathy. Clin J Am Soc Nephrol 6:1903–1911. https://doi.org/10.2215/CJN.11571210. (PMID: 10.2215/CJN.11571210217848193156425)
      Berthoux F, Mohey H, Laurent B et al (2011) Predicting the risk for dialysis or death in IgA nephropathy. J Am Soc Nephrol 22:752–761. https://doi.org/10.1681/ASN.2010040355. (PMID: 10.1681/ASN.2010040355212580353065230)
      Zhao N, Hou P, Lv J et al (2012) The level of galactose-deficient IgA1 in the sera of patients with IgA nephropathy is associated with disease progression. Kidney Int 82:790–796. https://doi.org/10.1038/ki.2012.197. (PMID: 10.1038/ki.2012.197226738883443545)
      Bagchi S, Lingaiah R, Mani K et al (2019) Significance of serum galactose deficient IgA1 as a potential biomarker for IgA nephropathy: a case control study. PLoS ONE 14:e0214256. https://doi.org/10.1371/journal.pone.0214256. (PMID: 10.1371/journal.pone.0214256309171886436754)
      Moher D, Liberati A, Tetzlaff J et al (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6:e1000097. https://doi.org/10.1371/journal.pmed.1000097. (PMID: 10.1371/journal.pmed.1000097196210722707599)
      Ottawa Hospital Research Institute. http://www.ohri.ca/programs/clinical_epidemiology/oxford.asp . Accessed 29 Mar 2022.
      Baujat B, Mahé C, Pignon J-P, Hill C (2002) A graphical method for exploring heterogeneity in meta-analyses: application to a meta-analysis of 65 trials. Stat Med 21:2641–2652. https://doi.org/10.1002/sim.1221. (PMID: 10.1002/sim.122112228882)
      Xu L-X, Yan Y, Zhang J-J et al (2005) The glycans deficiencies of macromolecular IgA1 is a contributory factor of variable pathological phenotypes of IgA nephropathy. Clin Exp Immunol 142:569–575. https://doi.org/10.1111/j.1365-2249.2005.02949.x. (PMID: 10.1111/j.1365-2249.2005.02949.x162971701809542)
      Berthoux F, Suzuki H, Thibaudin L et al (2012) Autoantibodies targeting galactose-deficient IgA1 associate with progression of IgA nephropathy. J Am Soc Nephrol 23:1579–1587. https://doi.org/10.1681/ASN.2012010053. (PMID: 10.1681/ASN.2012010053229043523431415)
      Hastings MC, Afshan S, Sanders JT et al (2012) Serum galactose-deficient IgA1 level is not associated with proteinuria in children with IgA nephropathy. Int J Nephrol 2012:315467. https://doi.org/10.1155/2012/315467. (PMID: 10.1155/2012/315467227546973382943)
      Satake K, Shimizu Y, Sasaki Y et al (2014) Serum under-O-glycosylated IgA1 level is not correlated with glomerular IgA deposition based upon heterogeneity in the composition of immune complexes in IgA nephropathy. BMC Nephrol 15:89. https://doi.org/10.1186/1471-2369-15-89. (PMID: 10.1186/1471-2369-15-89249284724064268)
      Suzuki Y, Matsuzaki K, Suzuki H et al (2014) Serum levels of galactose-deficient immunoglobulin (Ig) A1 and related immune complex are associated with disease activity of IgA nephropathy. Clin Exp Nephrol 18:770–777. https://doi.org/10.1007/s10157-013-0921-6. (PMID: 10.1007/s10157-013-0921-6244775134194014)
      Yanagawa H, Suzuki H, Suzuki Y et al (2014) A panel of serum biomarkers differentiates IgA nephropathy from other renal diseases. PLoS ONE 9:e98081. https://doi.org/10.1371/journal.pone.0098081. (PMID: 10.1371/journal.pone.0098081248580674032235)
      Jiang M, Jiang X, Rong L et al (2015) Serum galactose-deficient IgA1 levels in children with IgA nephropathy. Int J Clin Exp Med 8:7861–7866. (PMID: 262213414509286)
      Suzuki H, Allegri L, Suzuki Y et al (2016) Galactose-deficient IgA1 as a candidate urinary polypeptide marker of IgA nephropathy? Dis Markers 2016:7806438. https://doi.org/10.1155/2016/7806438. (PMID: 10.1155/2016/7806438276479475018335)
      Mizerska-Wasiak M, Gajewski Ł, Cichoń-Kawa K et al (2018) Serum GDIgA1 levels in children with IgA nephropathy and Henoch-Schönlein nephritis. Cent Eur J Immunol 43:162–167. https://doi.org/10.5114/ceji.2018.77386. (PMID: 10.5114/ceji.2018.77386301356286102617)
      Wada Y, Matsumoto K, Suzuki T et al (2018) Clinical significance of serum and mesangial galactose-deficient IgA1 in patients with IgA nephropathy. PLoS ONE 13:e0206865. https://doi.org/10.1371/journal.pone.0206865. (PMID: 10.1371/journal.pone.0206865303881656214568)
      Zhang K, Li Q, Zhang Y et al (2019) Clinical significance of galactose-deficient IgA1 by KM55 in patients with IgA nephropathy. Kidney Blood Press Res 44:1196–1206. https://doi.org/10.1159/000502579. (PMID: 10.1159/00050257931574506)
      Dotz V, Visconti A, Lomax-Browne HJ et al (2021) O- and N-glycosylation of serum immunoglobulin A is associated with IgA nephropathy and glomerular function. J Am Soc Nephrol 32:2455–2465. https://doi.org/10.1681/ASN.2020081208. (PMID: 10.1681/ASN.2020081208341275378722783)
      Irabu H, Shimizu M, Kaneko S et al (2020) Clinical significance of serum galactose-deficient IgA1 level in children with IgA nephropathy. J Immunol Res 2020:4284379. https://doi.org/10.1155/2020/4284379. (PMID: 10.1155/2020/4284379325374667260647)
      Kim JS, Hwang HS, Lee SH et al (2020) Clinical relevance of serum galactose deficient IgA1 in patients with IgA nephropathy. J Clin Med 9:E3549. https://doi.org/10.3390/jcm9113549. (PMID: 10.3390/jcm9113549)
      Medrano AS, Muijsemberg A, Wimbury D et al (2022) Relationship between immunoglobulin A1 lectin-binding specificities, mesangial C4d deposits and clinical phenotypes in immunoglobulin A nephropathy. Nephrol Dial Transpl 37:318–325. https://doi.org/10.1093/ndt/gfaa356. (PMID: 10.1093/ndt/gfaa356)
      Tang M, Zhang X, Li X et al (2021) Serum levels of galactose-deficient IgA1 in Chinese children with IgA nephropathy, IgA vasculitis with nephritis, and IgA vasculitis. Clin Exp Nephrol 25:37–43. https://doi.org/10.1007/s10157-020-01968-8. (PMID: 10.1007/s10157-020-01968-832935202)
      Wang M, Lv J, Zhang X et al (2020) Secondary IgA nephropathy shares the same immune features with primary IgA nephropathy. Kidney Int Rep 5:165–172. https://doi.org/10.1016/j.ekir.2019.10.012. (PMID: 10.1016/j.ekir.2019.10.01232043030)
      Martín-Penagos L, Fernández-Fresnedo G, Benito-Hernández A et al (2021) Measurement of galactosyl-deficient IgA1 by the monoclonal antibody KM55 contributes to predicting patients with IgA nephropathy with high risk of long-term progression. Nefrologia (Engl Ed) 41:311–320. https://doi.org/10.1016/j.nefro.2020.12.011. (PMID: 10.1016/j.nefro.2020.12.01136166247)
      Mizerska-Wasiak M, Gajewski Ł, Cichoń-Kawa K et al (2021) Relationship between Gd-IgA1 and TNFR1 in IgA nephropathy and IgA vasculitis nephritis in children - multicenter study. Cent Eur J Immunol 46:199–209. https://doi.org/10.5114/ceji.2021.108177. (PMID: 10.5114/ceji.2021.108177347647888568023)
      Chiu Y-L, Lin W-C, Shu K-H et al (2021) Alternative complement pathway is activated and associated with galactose-deficient IgA1 antibody in IgA nephropathy patients. Front Immunol 12:638309. https://doi.org/10.3389/fimmu.2021.638309. (PMID: 10.3389/fimmu.2021.638309341778898223746)
      Gale DP, Molyneux K, Wimbury D et al (2017) Galactosylation of IgA1 is associated with common variation in C1GALT1. J Am Soc Nephrol 28:2158–2166. https://doi.org/10.1681/ASN.2016091043. (PMID: 10.1681/ASN.2016091043282098085491291)
      Rajasekaran A, Julian BA, Rizk DV (2021) IgA nephropathy: an interesting autoimmune kidney disease. Am J Med Sci 361:176–194. https://doi.org/10.1016/j.amjms.2020.10.003. (PMID: 10.1016/j.amjms.2020.10.00333309134)
      Radford MG, Donadio JV, Bergstralh EJ, Grande JP (1997) Predicting renal outcome in IgA nephropathy. J Am Soc Nephrol 8:199–207. https://doi.org/10.1681/ASN.V82199. (PMID: 10.1681/ASN.V821999048338)
      Neelakantappa K, Gallo GR, Baldwin DS (1988) Proteinuria in IgA nephropathy. Kidney Int 33:716–721. https://doi.org/10.1038/ki.1988.57. (PMID: 10.1038/ki.1988.573367561)
      Canney M, Barbour SJ, Zheng Y et al (2021) Quantifying duration of proteinuria remission and association with clinical outcome in IgA nephropathy. J Am Soc Nephrol 32:436–447. https://doi.org/10.1681/ASN.2020030349. (PMID: 10.1681/ASN.202003034933514642)
      Alamartine E, Sauron C, Laurent B et al (2011) The use of the oxford classification of IgA nephropathy to predict renal survival. Clin J Am Soc Nephrol 6:2384–2388. https://doi.org/10.2215/CJN.01170211. (PMID: 10.2215/CJN.01170211218857913359557)
      Suzuki Y, Matsuzaki K, Suzuki H et al (2014) Proposal of remission criteria for IgA nephropathy. Clin Exp Nephrol 18:481–486. https://doi.org/10.1007/s10157-013-0849-x. (PMID: 10.1007/s10157-013-0849-x23913115)
      Trimarchi H, Barratt J, Cattran DC et al (2017) Oxford classification of IgA nephropathy 2016: an update from the IgA nephropathy classification working group. Kidney Int 91:1014–1021. https://doi.org/10.1016/j.kint.2017.02.003. (PMID: 10.1016/j.kint.2017.02.00328341274)
      Cambier A, Rabant M, El Karoui K et al (2020) Clinical and histological differences between adults and children in new onset IgA nephropathy. Pediatr Nephrol 35:1897–1905. https://doi.org/10.1007/s00467-020-04614-3. (PMID: 10.1007/s00467-020-04614-332444925)
      Haas M, Rahman MH, Cohn RA et al (2008) IgA nephropathy in children and adults: comparison of histologic features and clinical outcomes. Nephrol Dial Transpl 23:2537–2545. https://doi.org/10.1093/ndt/gfn014. (PMID: 10.1093/ndt/gfn014)
      Wang T, Ye F, Meng H et al (2012) Comparison of clinicopathological features between children and adults with IgA nephropathy. Pediatr Nephrol 27:1293–1300. https://doi.org/10.1007/s00467-012-2139-3. (PMID: 10.1007/s00467-012-2139-322562475)
      (2013) Summary of Recommendation Statements. Kidney Int Suppl 3:5–14. Doi: https://doi.org/10.1038/kisup.2012.77.
      Schwartz GJ, Muñoz A, Schneider MF et al (2009) New equations to estimate GFR in children with CKD. J Am Soc Nephrol 20:629–637. https://doi.org/10.1681/ASN.2008030287. (PMID: 10.1681/ASN.2008030287191583562653687)
      Levey AS, Stevens LA, Schmid CH et al (2009) A new equation to estimate glomerular filtration rate. Ann Intern Med 150:604–612. https://doi.org/10.7326/0003-4819-150-9-200905050-00006. (PMID: 10.7326/0003-4819-150-9-200905050-00006194148392763564)
      Knoppova B, Reily C, King RG et al (2021) Pathogenesis of IgA nephropathy: current understanding and implications for development of disease-specific treatment. J Clin Med 10:4501. https://doi.org/10.3390/jcm10194501. (PMID: 10.3390/jcm10194501346405308509647)
      Gharavi AG, Moldoveanu Z, Wyatt RJ et al (2008) Aberrant IgA1 glycosylation is inherited in familial and sporadic IgA nephropathy. J Am Soc Nephrol 19:1008–1014. https://doi.org/10.1681/ASN.2007091052. (PMID: 10.1681/ASN.2007091052182728412386728)
      Knoppova B, Reily C, Maillard N et al (2016) The origin and activities of IgA1-containing immune complexes in IgA nephropathy. Front Immunol 7:117. (PMID: 10.3389/fimmu.2016.00117271482524828451)
      Selvaskandan H, Barratt J, Cheung CK (2022) Immunological drivers of IgA nephropathy: exploring the mucosa–kidney link. Int J Immunogenet 49:8–21. https://doi.org/10.1111/iji.12561. (PMID: 10.1111/iji.1256134821031)
      Yasutake J, Suzuki Y, Suzuki H et al (2015) Novel lectin-independent approach to detect galactose-deficient IgA1 in IgA nephropathy. Nephrol Dial Transpl 30:1315–1321. https://doi.org/10.1093/ndt/gfv221. (PMID: 10.1093/ndt/gfv221)
      Pawluczyk IZA, Didangelos A, Barbour SJ et al (2021) Differential expression of microRNA miR-150-5p in IgA nephropathy as a potential mediator and marker of disease progression. Kidney Int 99:1127–1139. https://doi.org/10.1016/j.kint.2020.12.028. (PMID: 10.1016/j.kint.2020.12.02833417998)
      Pawluczyk I, Nicholson M, Barbour S et al (2021) A pilot study to predict risk of IgA nephropathy progression based on miR-204 expression. Kidney Int Rep 6:2179–2188. https://doi.org/10.1016/j.ekir.2021.05.018. (PMID: 10.1016/j.ekir.2021.05.018343866678343780)
      Barratt J, Tumlin J, Suzuki Y et al (2022) Randomized phase II JANUS study of atacicept in patients with IgA nephropathy and persistent proteinuria. Kidney Int Rep 7:1831–1841. https://doi.org/10.1016/j.ekir.2022.05.017. (PMID: 10.1016/j.ekir.2022.05.017359671049366370)
    • Contributed Indexing:
      Keywords: Biomarker; Gd-IgA1; Glycosylation; IgA nephropathy
    • Accession Number:
      0 (Immunoglobulin A)
      X2RN3Q8DNE (Galactose)
      0 (Biomarkers)
    • Publication Date:
      Date Created: 20240301 Date Completed: 20241216 Latest Revision: 20241216
    • Publication Date:
      20241217
    • Accession Number:
      10.1007/s40620-023-01874-8
    • Accession Number:
      38427309