Tradeoffs between phage resistance and nitrogen fixation drive the evolution of genes essential for cyanobacterial heterocyst functionality.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Oxford University Press Country of Publication: England NLM ID: 101301086 Publication Model: Print Cited Medium: Internet ISSN: 1751-7370 (Electronic) Linking ISSN: 17517362 NLM ISO Abbreviation: ISME J Subsets: MEDLINE
    • Publication Information:
      Publication: 2024- : Oxford : Oxford University Press
      Original Publication: London : Nature Pub. Group
    • Subject Terms:
    • Abstract:
      Harmful blooms caused by diazotrophic (nitrogen-fixing) Cyanobacteria are becoming increasingly frequent and negatively impact aquatic environments worldwide. Cyanophages (viruses infecting Cyanobacteria) can potentially regulate cyanobacterial blooms, yet Cyanobacteria can rapidly acquire mutations that provide protection against phage infection. Here, we provide novel insights into cyanophage:Cyanobacteria interactions by characterizing the resistance to phages in two species of diazotrophic Cyanobacteria: Nostoc sp. and Cylindrospermopsis raciborskii. Our results demonstrate that phage resistance is associated with a fitness tradeoff by which resistant Cyanobacteria have reduced ability to fix nitrogen and/or to survive nitrogen starvation. Furthermore, we use whole-genome sequence analysis of 58 Nostoc-resistant strains to identify several mutations associated with phage resistance, including in cell surface-related genes and regulatory genes involved in the development and function of heterocysts (cells specialized in nitrogen fixation). Finally, we employ phylogenetic analyses to show that most of these resistance genes are accessory genes whose evolution is impacted by lateral gene transfer events. Together, these results further our understanding of the interplay between diazotrophic Cyanobacteria and their phages and suggest that a tradeoff between phage resistance and nitrogen fixation affects the evolution of cell surface-related genes and of genes involved in heterocyst differentiation and nitrogen fixation.
      (© The Author(s) 2024. Published by Oxford University Press on behalf of the International Society for Microbial Ecology.)
    • References:
      Viruses. 2022 May 18;14(5):. (PMID: 35632829)
      Mob Genet Elements. 2012 Mar 1;2(2):88-95. (PMID: 22934242)
      Nucleic Acids Res. 2008 Jul 1;36(Web Server issue):W70-4. (PMID: 18424795)
      Front Plant Sci. 2020 Jul 08;11:804. (PMID: 32733494)
      mBio. 2016 Jun 14;7(3):. (PMID: 27302758)
      Nat Rev Microbiol. 2020 Feb;18(2):67-83. (PMID: 31857715)
      Annu Rev Microbiol. 2022 Sep 8;76:597-618. (PMID: 35671534)
      Nucleic Acids Res. 2002 May 15;30(10):2212-23. (PMID: 12000841)
      Environ Microbiol. 2019 Jun;21(6):1942-1956. (PMID: 30251319)
      Proc Natl Acad Sci U S A. 2007 May 15;104 Suppl 1:8649-54. (PMID: 17494741)
      J Appl Bacteriol. 1984 Feb;56(1):109-15. (PMID: 6423604)
      Virology. 1970 Mar;40(3):514-21. (PMID: 4985559)
      Nat Rev Microbiol. 2018 Dec;16(12):760-773. (PMID: 30104690)
      Biochem Soc Trans. 2005 Feb;33(Pt 1):164-7. (PMID: 15667295)
      J Bacteriol. 1997 May;179(9):2884-91. (PMID: 9139904)
      Nat Rev Microbiol. 2010 Jan;8(1):39-50. (PMID: 19966815)
      Bioinformatics. 2010 Jul 1;26(13):1608-15. (PMID: 20472543)
      Algorithms Mol Biol. 2011 Nov 24;6:26. (PMID: 22115189)
      Nature. 2020 Jan;577(7790):327-336. (PMID: 31942051)
      Res Microbiol. 2003 Apr;154(3):157-64. (PMID: 12706503)
      Viruses. 2019 Jun 18;11(6):. (PMID: 31216787)
      Mol Microbiol. 2018 Apr 20;:. (PMID: 29676808)
      Nucleic Acids Res. 2010 Jan;38(Database issue):D211-22. (PMID: 19920124)
      Photosynth Res. 2014 Sep;121(2-3):135-50. (PMID: 24907906)
      Arch Microbiol. 2007 Dec;188(6):551-63. (PMID: 17639350)
      J Bacteriol. 1992 Oct;174(19):6025-32. (PMID: 1328150)
      Appl Microbiol. 1975 Feb;29(2):234-9. (PMID: 803818)
      Genome Res. 2000 Aug;10(8):1204-10. (PMID: 10958638)
      Curr Biol. 2020 Oct 5;30(19):R1120-R1124. (PMID: 33022253)
      J Bacteriol. 2008 Dec;190(23):7645-54. (PMID: 18835986)
      PeerJ. 2018 Jan 25;6:e4320. (PMID: 29423345)
      Nucleic Acids Res. 2018 Jul 2;46(W1):W246-W251. (PMID: 29790974)
      Harmful Algae. 2016 Apr;54:87-97. (PMID: 28073483)
      PLoS One. 2015 May 22;10(5):e0128036. (PMID: 26000737)
      R Soc Open Sci. 2016 Dec 14;3(12):160839. (PMID: 28083116)
      Genes Dev. 1991 Feb;5(2):321-30. (PMID: 1840555)
      Nature. 2011 Jun 29;474(7353):604-8. (PMID: 21720364)
      Nucleic Acids Res. 2007 Jul;35(Web Server issue):W52-7. (PMID: 17537822)
      Front Microbiol. 2012 Mar 09;3:86. (PMID: 22408640)
      Annu Rev Virol. 2022 Sep 29;9(1):57-78. (PMID: 35584889)
      mBio. 2020 Jan 21;11(1):. (PMID: 31964726)
      Proc Natl Acad Sci U S A. 2019 Aug 20;116(34):16899-16908. (PMID: 31383764)
      PLoS One. 2009 Nov 24;4(11):e7979. (PMID: 19956731)
      Annu Rev Microbiol. 1984;38:1-25. (PMID: 6437321)
      Mol Microbiol. 2005 Jul;57(1):111-23. (PMID: 15948953)
      J Bacteriol. 1993 Mar;175(6):1697-704. (PMID: 8449877)
      Proc Natl Acad Sci U S A. 2012 Mar 20;109(12):4544-9. (PMID: 22388749)
      Nat Rev Microbiol. 2018 Aug;16(8):471-483. (PMID: 29946124)
      Harmful Algae. 2019 May;85:101699. (PMID: 31810530)
      ISME J. 2007 Aug;1(4):300-12. (PMID: 18043641)
      Proc Natl Acad Sci U S A. 2004 Nov 9;101(45):16040-5. (PMID: 15520378)
      Virus Res. 2015 May 4;203:4-9. (PMID: 25836275)
      Proc Natl Acad Sci U S A. 2016 Nov 8;113(45):E6984-E6992. (PMID: 27791130)
      Front Microbiol. 2018 Mar 08;9:425. (PMID: 29568293)
      Nat Biotechnol. 2011 Jan;29(1):24-6. (PMID: 21221095)
      Nat Rev Microbiol. 2009 Nov;7(11):828-36. (PMID: 19834481)
      Nucleic Acids Res. 2000 Jan 1;28(1):33-6. (PMID: 10592175)
      Biotechniques. 2000 Jun;28(6):1102, 1104. (PMID: 10868275)
      mBio. 2021 Aug 31;12(4):e0138221. (PMID: 34253066)
      J Basic Microbiol. 2009 Feb;49(1):5-24. (PMID: 19253332)
      Mikrobiologiia. 1973 Sep-Oct;42(5):904-7. (PMID: 4209794)
      Harmful Algae. 2023 May;124:102409. (PMID: 37164560)
      J Bacteriol. 2019 Jan 11;201(3):. (PMID: 30420453)
      BMC Genomics. 2011 Jun 28;12:332. (PMID: 21711558)
      J Bacteriol. 1996 Jun;178(12):3572-7. (PMID: 8655556)
      Microb Ecol. 2013 May;65(4):995-1010. (PMID: 23314096)
      Science. 1998 Oct 30;282(5390):935-8. (PMID: 9794762)
      Environ Microbiol. 2022 May;24(5):2435-2448. (PMID: 35049139)
      Arch Virol. 2002 Sep;147(9):1685-98. (PMID: 12209309)
      PeerJ. 2015 Oct 08;3:e1319. (PMID: 26500826)
      BMC Bioinformatics. 2009 Dec 15;10:421. (PMID: 20003500)
      Virology. 1981 Oct 15;114(1):236-46. (PMID: 6269286)
      J Bacteriol. 2001 Apr;183(8):2654-61. (PMID: 11274126)
      Appl Environ Microbiol. 2007 Sep;73(17):5516-22. (PMID: 17630310)
      Methods Mol Biol. 2014;1151:165-88. (PMID: 24838886)
    • Grant Information:
      Israel Water Authority; 1386/20 Israel Science Foundation
    • Contributed Indexing:
      Keywords: Cyanobacteria; cost of resistance; genome evolution; nitrogen fixation; phage; resistance; tradeoff
    • Accession Number:
      N762921K75 (Nitrogen)
    • Publication Date:
      Date Created: 20240216 Date Completed: 20240219 Latest Revision: 20240219
    • Publication Date:
      20250114
    • Accession Number:
      PMC10811720
    • Accession Number:
      10.1093/ismejo/wrad008
    • Accession Number:
      38365231