Abstract: The tumor necrosis factor (TNF) receptor-associated factor (TRAF) family has been reported to be involved in many immune pathways. In a previous study, we identified 5 TRAF genes, including TRAF2, 3, 4, 6, and 7, in the bay scallop (Argopecten irradians, Air) and the Peruvian scallop (Argopecten purpuratus, Apu). Since TRAF6 is a key molecular link in the TNF superfamily, we conducted a series of studies targeting the TRAF6 gene in the Air and Apu scallops as well as their hybrid progeny, Aip (Air ♀ × Apu ♂) and Api (Apu ♀ × Air ♂). Subcellular localization assay showed that the Air-, Aip-, and Api-TRAF6 were widely distributed in the cytoplasm of the human embryonic kidney cell line (HEK293T). Additionally, dual-luciferase reporter assay revealed that among TRAF3, TRAF4, and TRAF6, only the overexpression of TRAF6 significantly activated NF-κB activity in the HEK293T cells in a dose-dependent manner. These results suggest a crucial role of TRAF6 in the immune response in Argopecten scallops. To investigate the specific immune mechanism of TRAF6 in Argopecten scallops, we conducted TRAF6 knockdown using RNA interference. Transcriptomic analyses of the TRAF6 RNAi and control groups identified 1194, 2403, and 1099 differentially expressed genes (DEGs) in the Air, Aip, and Api scallops, respectively. KEGG enrichment analyses revealed that these DEGs were primarily enriched in transport and catabolism, amino acid metabolism, peroxisome, lysosome, and phagosome pathways. Expression profiles of 28 key DEGs were confirmed by qRT-PCR assays. The results of this study may provide insights into the immune mechanisms of TRAF in Argopecten scallops and ultimately benefit scallop breeding.
(Copyright © 2024 Elsevier Ltd. All rights reserved.)
No Comments.