Thyroid dysfunction in COVID-19.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Nature Pub. Group Country of Publication: England NLM ID: 101500078 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1759-5037 (Electronic) Linking ISSN: 17595029 NLM ISO Abbreviation: Nat Rev Endocrinol Subsets: MEDLINE
    • Publication Information:
      Original Publication: London : Nature Pub. Group
    • Subject Terms:
    • Abstract:
      The COVID-19 pandemic has affected over 772 million people globally. While lung damage is the major contributor to the morbidity and mortality of this disease, the involvement of multiple organs, including the endocrine glands, has been reported. This Review aims to provide an updated summary of evidence regarding COVID-19 and thyroid dysfunction, incorporating highlights of recent advances in the field, particularly in relation to long COVID and COVID-19 vaccination. Since subacute thyroiditis following COVID-19 was first reported in May 2020, thyroid dysfunction associated with COVID-19 has been increasingly recognized, secondary to direct and indirect effects on the hypothalamic-pituitary-thyroid axis. Here, we summarize the epidemiological evidence, pattern and clinical course of thyroid dysfunction following COVID-19 and examine radiological, molecular and histological evidence of thyroid involvement in SARS-CoV-2 infection. Beyond acute SARS-CoV-2 infection, it is also timely to examine the course and implication of thyroid dysfunction in the context of long COVID owing to the large population of survivors of COVID-19 worldwide. This Review also analyses the latest evidence on the relationship between the therapeutics and vaccination for COVID-19 and thyroid dysfunction. To conclude, evidence-based practice recommendations for thyroid function testing during and following COVID-19 and concerning COVID-19 vaccination are proposed.
      (© 2024. Springer Nature Limited.)
    • References:
      World Health Organization. WHO COVID-19 dashboard. WHO https://covid19.who.int (2023).
      Hu, B., Guo, H., Zhou, P. & Shi, Z.-L. Characteristics of SARS-CoV-2 and COVID-19. Nat. Rev. Microbiol. 19, 141–154 (2021). (PMID: 3302430710.1038/s41579-020-00459-7)
      Esmaeilzadeh, A., Elahi, R., Siahmansouri, A., Maleki, A. J. & Moradi, A. Endocrine and metabolic complications of COVID-19: lessons learned and future prospects. J. Mol. Endocrinol. 69, R125–R150 (2022). (PMID: 3590084710.1530/JME-22-0036)
      Brancatella, A. et al. Subacute thyroiditis after Sars-COV-2 infection. J. Clin. Endocrinol. Metab. 105, dgaa276 (2020). This is the very first case of SAT related to COVID-19 reported in the literature. (PMID: 3243694810.1210/clinem/dgaa276)
      Wei, L. et al. Pathology of the thyroid in severe acute respiratory syndrome. Hum. Pathol. 38, 95–102 (2007). (PMID: 1699656910.1016/j.humpath.2006.06.011)
      Steenblock, C. et al. SARS-CoV-2 infection and its effects on the endocrine system. Best Pract. Res. Clin. Endocrinol. Metab. 37, 101761 (2023). (PMID: 3690778710.1016/j.beem.2023.101761)
      Davis, H. E., McCorkell, L., Vogel, J. M. & Topol, E. J. Long COVID: major findings, mechanisms and recommendations. Nat. Rev. Microbiol. 21, 133–146 (2023). (PMID: 36639608983920110.1038/s41579-022-00846-2)
      Meftah, E. et al. Subacute thyroiditis following COVID-19: a systematic review. Front. Endocrinol. 14, 1126637 (2023). (PMID: 10.3389/fendo.2023.1126637)
      Ziaka, M. & Exadaktylos, A. Insights into SARS-CoV-2-associated subacute thyroiditis: from infection to vaccine. Virol. J. 20, 132 (2023). (PMID: 373448781028322710.1186/s12985-023-02103-1)
      Mathews, S. E. et al. Subacute thyroiditis and heart failure in a patient presenting with COVID-19. J. Investig. Med. High Impact Case Rep. 9, 23247096211009412 (2021). (PMID: 338534248056563)
      Houshmand, G., Ghorashi, S. M., Mirrazeghi, F. & Omidi, N. Concomitant active inflammation of myocardium and thyroid, incidental finding in COVID-19 pandemic: a case report. Clin. Case Rep. 9, e04998 (2021). (PMID: 34745619855208410.1002/ccr3.4998)
      Osorio Martínez, A., González-Razo, V. T., Navarro-Sánchez, V., Souto Meiriño, C. A. & Ahumada-Ayala, M. SARS-CoV-2-related subacute thyroiditis, myocarditis, and hepatitis after full resolution of COVID-19 serum markers. Am. J. Case Rep. 22, e932321 (2021). (PMID: 3413882810.12659/AJCR.932321)
      Abreu, R., Miguel, R. & Saieg, M. Subacute (De Quervain) thyroiditis during the COVID-19 pandemic. Cancer Cytopathol. 129, 844–846 (2021). (PMID: 33970557823962910.1002/cncy.22449)
      Muller, I. et al. SARS-CoV-2-related atypical thyroiditis. Lancet Diabetes Endocrinol. 66, 2019–2021 (2020). This study described the unique presentation of SARS-CoV-2-related atypical thyroiditis predominantly in patients with severe COVID-19.
      Stasiak, M., Zawadzka-Starczewska, K. & Lewiński, A. Clinical manifestation of subacute thyroiditis triggered by SARS-CoV-2 infection can be HLA-dependent. Viruses 13, 2447 (2021). (PMID: 34960716870701710.3390/v13122447)
      Bostan, H. et al. Impact of the COVID-19 pandemic on the incidence, seasonal distribution, and characteristics of subacute thyroiditis. Endocrine 79, 323–330 (2023). (PMID: 3612959310.1007/s12020-022-03197-3)
      Batman, A. et al. Subacute THYROiditis related to SARS-CoV-2 vaccine and covid-19 (THYROVAC Study): a Multicenter Nationwide Study. J. Clin. Endocrinol. Metab. 108, 1013–1026 (2023). (PMID: 10.1210/clinem/dgad235)
      de la Higuera López-Frías, M., Perdomo, C. M. & Galofré, J. C. Subacute thyroiditis following COVID-19 infection. Rev. Clin. Esp. 221, 370–372 (2021). (PMID: 340592377862888)
      San Juan, M. D. J., Florencio, M. Q. V. & Joven, M. H. Subacute thyroiditis in a patient with coronavirus disease 2019. AACE Clin. Case Rep. 6, e361–e364 (2020). (PMID: 33244504768542010.4158/ACCR-2020-0524)
      Pirola, I. et al. Incidence of De Quervain’s thyroiditis during the COVID-19 pandemic in an area heavily affected by Sars-CoV-2 infection. Endocrine 74, 215–218 (2021). (PMID: 34363586834914010.1007/s12020-021-02841-8)
      Brancatella, A. et al. Subacute thyroiditis during the SARS-CoV-2 pandemic. J. Endocr. Soc. 5, bvab130 (2021). (PMID: 34458656834489210.1210/jendso/bvab130)
      Bahçecioğlu, A. B. et al. Subacute thyroiditis during the COVID-19 pandemic: a prospective study. J. Endocrinol. Invest. 45, 865–874 (2022). (PMID: 35023078875454910.1007/s40618-021-01718-x)
      Ahn, H. Y., Choi, H. S., Ha, S. & Cho, S. W. Incidence of subacute thyroiditis during the COVID-19 pandemic in South Korea using the National Health Insurance Service Database. Thyroid 32, 1299–1306 (2022). (PMID: 3604782210.1089/thy.2022.0363)
      Mondal, S., DasGupta, R., Lodh, M. & Ganguly, A. Subacute thyroiditis following recovery from COVID-19 infection: novel clinical findings from an Eastern Indian cohort. Postgrad. Med. J. 99, 558–565 (2022). (PMID: 10.1136/postgradmedj-2021-141429)
      Mizuno, S. et al. A case of postpartum thyroiditis following SARS-CoV-2 infection. Endocr. J. 68, 371–374 (2021). (PMID: 3317725110.1507/endocrj.EJ20-0553)
      Nakaizumi, N., Fukata, S., Hirokawa, M. & Akamizu, T. Painless thyroiditis incidentally diagnosed following SARS-CoV-2 infection. BMJ Case Rep. 15, e252837 (2022). (PMID: 36455982971683310.1136/bcr-2022-252837)
      Fliers, E., Bianco, A. C., Langouche, L. & Boelen, A. Thyroid function in critically ill patients. Lancet Diabetes Endocrinol. 3, 816–825 (2015). (PMID: 26071885497922010.1016/S2213-8587(15)00225-9)
      Mateu-Salat, M., Urgell, E. & Chico, A. SARS-COV-2 as a trigger for autoimmune disease: report of two cases of Graves’ disease after COVID-19. J. Endocrinol. Invest. 43, 1527–1528 (2020). (PMID: 32686042736892310.1007/s40618-020-01366-7)
      Brancatella, A., Viola, N., Santini, F. & Latrofa, F. COVID-induced thyroid autoimmunity. Best Pract. Res. Clin. Endocrinol. Metab. 37, 101742 (2023). (PMID: 3681366010.1016/j.beem.2023.101742)
      Allam, M. M., El-Zawawy, H. T., Ahmed, S. M. & Aly Abdelhamid, M. Thyroid disease and covid-19 infection: case series. Clin. Case Rep. 9, e04225 (2021). (PMID: 34178336821201510.1002/ccr3.4225)
      Lanzolla, G., Marcocci, C. & Marinò, M. Graves’ disease and Graves’ orbitopathy following COVID-19. J. Endocrinol. Invest. 44, 2011–2012 (2021). (PMID: 33964007810637110.1007/s40618-021-01576-7)
      Tan, S. Y. T. et al. Acute flaccid tetraparesis after COVID-19 infection: think of the thyroid. Case Rep. Med. 2022, 5827664 (2022). (PMID: 35531575907635010.1155/2022/5827664)
      Sullivan, K., Helgeson, J. & McGowan, A. COVID-19 associated thyroid storm: a case report. Clin. Pract. Cases Emerg. Med. 5, 412–414 (2021). (PMID: 34813431861045110.5811/cpcem.2021.5.52692)
      Barajas Galindo, D. E. et al. Increased incidence of Graves’ disease during the SARS-CoV2 pandemic. Clin. Endocrinol. 98, 730–737 (2023). (PMID: 10.1111/cen.14860)
      Khaja, M. et al. Hashimoto’s thyroiditis encephalopathy induced by COVID-19 infection. Cureus 14, e28419 (2022). (PMID: 361768219509523)
      Dixit, N. M. et al. Sudden cardiac arrest in a patient with myxedema coma and COVID-19. J. Endocr. Soc. 4, bvaa130 (2020). (PMID: 32984743749961910.1210/jendso/bvaa130)
      Darvishi, M., Nazer, M. R., Shahali, H. & Nouri, M. Association of thyroid dysfunction and COVID-19: a systematic review and meta-analysis. Front. Endocrinol. 13, 947594 (2022). (PMID: 10.3389/fendo.2022.947594)
      Lui, D. T. W. et al. Thyroid dysfunction in relation to immune profile, disease status and outcome in 191 patients with COVID-19. J. Clin. Endocrinol. Metab. 106, 926–935 (2021). This cohort study of patients with COVID-19 demonstrates the three common patterns of abnormal thyroid function tests in the context of COVID-19. (PMID: 10.1210/clinem/dgaa813)
      Croce, L. et al. The cytokine storm and thyroid hormone changes in COVID-19. J. Endocrinol. Invest. 44, 891–904 (2021). (PMID: 33559848787152210.1007/s40618-021-01506-7)
      Baldelli, R. et al. Thyroid dysfunction in COVID-19 patients. J. Endocrinol. Invest. 44, 2735–2739 (2021). (PMID: 34101132818548510.1007/s40618-021-01599-0)
      Ilera, V. et al. Correlation between inflammatory parameters and pituitary-thyroid axis in patients with COVID-19. Endocrine 74, 455–460 (2021). (PMID: 34515958843601010.1007/s12020-021-02863-2)
      Duntas, L. H. & Jonklaas, J. COVID-19 and thyroid diseases: a bidirectional impact. J. Endocr. Soc. 5, bvab076 (2021). (PMID: 34189381813535010.1210/jendso/bvab076)
      Okoye, C. et al. Is non-thyroidal illness syndrome (NTIS) a clinical predictor of COVID-19 mortality in critically ill oldest old patients? J. Endocrinol. Invest. 45, 1689–1692 (2022). (PMID: 35545741909413410.1007/s40618-022-01806-6)
      Lania, A. et al. Thyrotoxicosis in patients with COVID-19: the THYRCOV study. Eur. J. Endocrinol. 183, 381–387 (2020). This cohort study demonstrates the occurrence of thyrotoxicosis without underlying thyroid autoimmunity in the context of COVID-19. (PMID: 32698147949431510.1530/EJE-20-0335)
      Sparano, C. et al. Euthyroid sick syndrome as an early surrogate marker of poor outcome in mild SARS-CoV-2 disease. J. Endocrinol. Invest. 45, 837–847 (2021). (PMID: 34850365863256510.1007/s40618-021-01714-1)
      Das, L. et al. Spectrum of endocrine dysfunction and association with disease severity in patients with COVID-19: insights from a cross-sectional, observational study. Front. Endocrinol. 12, 645787 (2021). (PMID: 10.3389/fendo.2021.645787)
      Pizzocaro, A. et al. Outcome of Sars-COV-2-related thyrotoxicosis in survivors of Covid-19: a prospective study. Endocrine 73, 255–260 (2021). (PMID: 34047879816170610.1007/s12020-021-02758-2)
      Assimakopoulos, S. F. et al. Low serum TSH in the acute phase of COVID-19 pneumonia: thyrotoxicosis or a face of ‘non-thyroidal illness syndrome’? Clin. Chem. Lab. Med. 59, e420–e423 (2021). (PMID: 3424620010.1515/cclm-2021-0511)
      Beltrão, F. E. et al. Thyroid hormone levels during hospital admission inform disease severity and mortality in COVID-19 patients. Thyroid 31, 1639–1649 (2021). (PMID: 3431425910.1089/thy.2021.0225)
      Świątkowska-Stodulska, R., Berlińska, A. & Puchalska-Reglińska, E. Thyroglobulin levels in COVID-19-positive patients: correlations with thyroid function tests, inflammatory markers, and glucocorticoid use. Front. Endocrinol. 13, 1031188 (2022). (PMID: 10.3389/fendo.2022.1031188)
      Vassiliadi, D. A. et al. Thyroid hormone alterations in critically and non-critically ill patients with SARS-CoV-2 infection. Endocr. Connect. 10, 646–655 (2021). (PMID: 34010152824070410.1530/EC-21-0029)
      Lui, D. T. W. et al. Role of non-thyroidal illness syndrome in predicting adverse outcomes in COVID-19 patients predominantly of mild-to-moderate severity. Clin. Endocrinol. 95, 469–477 (2021). (PMID: 10.1111/cen.14476)
      Akkoyunlu, Y. et al. Analysis of the involvement of the thyroid gland using computed tomography in patients with suspected SARS-CoV-2 infection: a retrospective study. Eur. Rev. Med. Pharmacol. Sci. 25, 4149–4155 (2021). (PMID: 34156696)
      Lui, D. T. W. et al. Higher SARS-CoV-2 viral loads correlated with smaller thyroid volumes on ultrasound among male COVID-19 survivors. Endocrine 74, 205–214 (2021). (PMID: 34467467840803710.1007/s12020-021-02855-2)
      Urhan, E., Karaca, Z., Kara, C. S., Yuce, Z. T. & Unluhizarci, K. The potential impact of COVID-19 on thyroid gland volumes among COVID-19 survivors. Endocrine 76, 635–641 (2022). (PMID: 35239124889211210.1007/s12020-022-03019-6)
      Fung, M. H. M. et al. A prospective follow-up of thyroid volume and thyroiditis features on ultrasonography among survivors of predominantly mild to moderate COVID-19. PeerJ 11, e15034 (2023). (PMID: 369497631002671410.7717/peerj.15034)
      Clarke, S. A., Abbara, A. & Dhillo, W. S. Impact of COVID-19 on the endocrine system: a mini-review. Endocrinology 163, bqab203 (2022). (PMID: 3454340410.1210/endocr/bqab203)
      Piekarska, A. et al. The influence of SARS-CoV-2 infection on the thyroid gland. Biomedicines 11, 614 (2023). (PMID: 36831150995307410.3390/biomedicines11020614)
      Li, M.-Y., Li, L., Zhang, Y. & Wang, X.-S. Expression of the SARS-CoV-2 cell receptor gene ACE2 in a wide variety of human tissues. Infect. Dis. Poverty 9, 45 (2020). (PMID: 32345362718653410.1186/s40249-020-00662-x)
      Rotondi, M. et al. Detection of SARS-COV-2 receptor ACE-2 mRNA in thyroid cells: a clue for COVID-19-related subacute thyroiditis. J. Endocrinol. Invest. 44, 1085–1090 (2021). (PMID: 3302555310.1007/s40618-020-01436-w)
      Coperchini, F. et al. Modulation of ACE-2 mRNA by inflammatory cytokines in human thyroid cells: a pilot study. Endocrine 74, 638–645 (2021). (PMID: 34224085825622410.1007/s12020-021-02807-w)
      Wong, D. W. L. et al. Multisystemic cellular tropism of SARS-CoV-2 in autopsies of COVID-19 patients. Cells 10, 1900 (2021). (PMID: 34440669839495610.3390/cells10081900)
      Park, G.-C. et al. ACE2 and TMPRSS2 immunolocalization and COVID-19-related thyroid disorder. Biology 11, 697 (2022). (PMID: 35625425913864110.3390/biology11050697)
      Macedo, S. et al. Detection of SARS-CoV-2 infection in thyroid follicular cells from a COVID-19 autopsy series. Eur. Thyroid. J. 11, e220074 (2022). This autopsy series demonstrates the evidence of direct SARS-CoV-2 involvement in the thyroid gland. (PMID: 35900859934633610.1530/ETJ-22-0074)
      Koehler, V. F. et al. Thyroidal angiotensin-converting enzyme 2 protein expression and thyroid function tests in patients with COVID-19: results from a retrospective case series and a prospective cohort study. Thyroid 33, 177–185 (2023). This study of thyroid samples shows the high percentage of thyroidal ACE2 expression in deceased patients who had COVID-19, suggesting the possible mechanism for SARS-CoV-2 involvement in the thyroid gland. (PMID: 3645323210.1089/thy.2022.0229)
      Poma, A. M. et al. COVID-19 autopsy cases: detection of virus in endocrine tissues. J. Endocrinol. Invest. 45, 209–214 (2021). (PMID: 34191258824330310.1007/s40618-021-01628-y)
      Poma, A. M. et al. Activation of type I and type II interferon signaling in SARS-CoV-2-positive thyroid tissue of patients dying from COVID-19. Thyroid 31, 1766–1775 (2021). (PMID: 3454187810.1089/thy.2021.0345)
      Jakovac, H., Ferenčić, A., Stemberger, C., Mohar Vitezić, B. & Cuculić, D. Detection of Sars-Cov-2 antigens in thyroid gland showing histopathological features of subacute thyroiditis. Eur. Thyroid. J. 11, e220005 (2022). (PMID: 35166214896317210.1530/ETJ-22-0005)
      Bellastella, G. et al. Neuroimmunoendocrinology of SARS-CoV 2 infection. Biomedicines 10, 2855 (2022). (PMID: 36359373968786310.3390/biomedicines10112855)
      Capatina, C., Poiana, C. & Fleseriu, M. Pituitary and SARS CoV-2: an unremitting conundrum. Best Pract. Res. Clin. Endocrinol. Metab. 37, 101752 (2023). (PMID: 3687877410.1016/j.beem.2023.101752)
      Li, Z. et al. Thyroxine changes in COVID-19 pandemic: a systematic review and meta-analysis. Front. Endocrinol. 14, 1089190 (2023). (PMID: 10.3389/fendo.2023.1089190)
      Soldevila, B., Puig-Domingo, M. & Marazuela, M. Basic mechanisms of SARS-CoV-2 infection. What endocrine systems could be implicated? Rev. Endocr. Metab. Disord. 23, 137–150 (2022). (PMID: 3433373210.1007/s11154-021-09678-6)
      Scappaticcio, L., Pitoia, F., Esposito, K., Piccardo, A. & Trimboli, P. Impact of COVID-19 on the thyroid gland: an update. Rev. Endocr. Metab. Disord. 22, 803–815 (2021). This study is a concise summary of the effect of COVID-19 on the thyroid gland. (PMID: 3324150810.1007/s11154-020-09615-z)
      Stasiak, M. & Lewiński, A. New aspects in the pathogenesis and management of subacute thyroiditis. Rev. Endocr. Metab. Disord. 22, 1027–1039 (2021). This paper is a comprehensive review of various clinical aspects of SAT, including COVID-19-related SAT. (PMID: 33950404809688810.1007/s11154-021-09648-y)
      Murugan, A. K. & Alzahrani, A. S. SARS-CoV-2 plays a pivotal role in inducing hyperthyroidism of Graves’ disease. Endocrine 73, 243–254 (2021). (PMID: 34106438818876210.1007/s12020-021-02770-6)
      Vojdani, A., Vojdani, E. & Kharrazian, D. Reaction of human monoclonal antibodies to SARS-CoV-2 proteins with tissue antigens: implications for autoimmune diseases. Front. Immunol. 11, 617089 (2020). (PMID: 3358470910.3389/fimmu.2020.617089)
      Colonnello, E. et al. Thyroid hormones and platelet activation in COVID-19 patients. J. Endocrinol. Invest. 46, 261–269 (2023). (PMID: 3606487910.1007/s40618-022-01896-2)
      Zou, R. et al. Euthyroid sick syndrome in patients with COVID-19. Front. Endocrinol. 11, 566439 (2020). (PMID: 10.3389/fendo.2020.566439)
      Gao, W. et al. Thyroid hormone concentrations in severely or critically ill patients with COVID-19. J. Endocrinol. Invest. 44, 1031–1040 (2021). (PMID: 3314037910.1007/s40618-020-01460-w)
      Lui, D. T. W., Lee, C. H. & Lam, K. S. L. Letter to the Editor: ’Euthyroid sick syndrome as an early surrogate marker of poor outcome in mild SARS-CoV-2 disease’-prognostic significance of non-thyroidal illness syndrome across the whole spectrum of COVID-19 severity. J. Endocrinol. Invest. 45, 901–902 (2022). (PMID: 35023079875551110.1007/s40618-021-01732-z)
      Gong, J. et al. Prognostic significance of low TSH concentration in patients with COVID-19 presenting with non-thyroidal illness syndrome. BMC Endocr. Disord. 21, 111 (2021). (PMID: 34044831815901710.1186/s12902-021-00766-x)
      Sahin, M. et al. The clinical characteristics and outcomes of COVID-19 patients with pre-existing thyroid dysfunction: a Nationwide study. Horm. Metab. Res. 55, 25–30 (2023). (PMID: 3632814910.1055/a-1971-8781)
      Brix, T. H., Hegedüs, L., Hallas, J. & Lund, L. C. Risk and course of SARS-CoV-2 infection in patients treated for hypothyroidism and hyperthyroidism. Lancet Diabetes Endocrinol. 9, 197–199 (2021). A key population-based observational study suggesting that patients treated for hypothyroidism and hyperthyroidism who were infected by SARS-CoV-2 did not fare worse than patients without SARS-CoV-2 infection. (PMID: 33617779790664010.1016/S2213-8587(21)00028-0)
      Nguyen, C. et al. SARS-CoV-2 infection in patients with thyroid disease: a cross-sectional study. Ann. Thyroid. 6, 7 (2022). (PMID: 3415118710.21037/aot-21-8)
      van Gerwen, M. et al. Outcomes of patients with hypothyroidism and COVID-19: a retrospective cohort study. Front. Endocrinol. 11, 565 (2020). (PMID: 10.3389/fendo.2020.00565)
      Pereira, D. N. et al. Hypothyroidism does not lead to worse prognosis in COVID-19: findings from the Brazilian COVID-19 registry. Int. J. Infect. Dis. 116, 319–327 (2022). (PMID: 35065257876952910.1016/j.ijid.2022.01.016)
      Bogojevic, M. et al. Association of hypothyroidism with outcomes in hospitalized adults with COVID-19: results from the International SCCM Discovery Viral Infection and Respiratory Illness Universal Study (VIRUS): COVID-19 Registry.Clin. Endocrinol. https://doi.org/10.1111/cen.14699 (2022). (PMID: 10.1111/cen.14699)
      Bagalà, V. et al. Clinical presentation and prognosis of COVID-19 in older adults with hypothyroidism: data from the GeroCovid observational study. J. Endocrinol. Invest. 46, 1891–1899 (2023). (PMID: 3696741710.1007/s40618-023-02048-w)
      Lui, D. T. W. et al. Development of a prediction score (ThyroCOVID) for identifying abnormal thyroid function in COVID-19 patients. J. Endocrinol. Invest. 45, 2149–2156 (2022). (PMID: 35831586928123910.1007/s40618-022-01854-y)
      Clarke, S. A. et al. Normal adrenal and thyroid function in patients who survive COVID-19 infection. J. Clin. Endocrinol. Metab. 106, 2208–2220 (2021). (PMID: 34008009819455610.1210/clinem/dgab349)
      Lui, D. T. W. et al. Long COVID in patients with mild to moderate disease: do thyroid function and autoimmunity play a role? Endocr. Pract. 27, 894–902 (2021). (PMID: 34237471825740110.1016/j.eprac.2021.06.016)
      Lui, D. T. W. et al. A prospective follow-up on thyroid function, thyroid autoimmunity and long COVID among 250 COVID-19 survivors. Endocrine 80, 380–391 (2023). A 6-month prospective follow-up study predominantly of patients with non-severe COVID-19 showing that COVID-19 did not lead to a substantial increase in incidence of thyroid dysfunction and thyroid autoimmunity. (PMID: 36596904981024010.1007/s12020-022-03281-8)
      Khoo, B. et al. Thyroid function before, during, and after COVID-19. J. Clin. Endocrinol. Metab. 106, e803–e811 (2021). (PMID: 3318093210.1210/clinem/dgaa830)
      Campi, I. et al. The spectrum of thyroid function tests during hospitalization for SARS COV-2 infection. Eur. J. Endocrinol. 184, 699–709 (2021). (PMID: 33683214949433310.1530/EJE-20-1391)
      Goyal, A., Gupta, Y., Kalaivani, M. & Tandon, N. Mild and asymptomatic SARS-CoV-2 infection is not associated with progression of thyroid dysfunction or thyroid autoimmunity. Clin. Endocrinol. 5, 7–9 (2022).
      Lui, D. T. W. et al. The impact of interferon Beta-1b therapy on thyroid function and autoimmunity among COVID-19 survivors. Front. Endocrinol. 12, 746602 (2021). (PMID: 10.3389/fendo.2021.746602)
      Alphan Uc, Z., Yagcı, P., Adibelli, Z. & Duran, C. The spectrum of thyroid function tests and autoantibodies during hospitalization and after six months of discharge in COVID-19 patients: does COVID-19 trigger autoimmunity? Endocr. Res. 48, 44–54 (2023). (PMID: 3688390810.1080/07435800.2023.2188086)
      Muller, I. et al. Long-term outcome of thyroid abnormalities in patients with severe Covid-19. Eur. Thyroid. J. 12, e220200 (2023). A prospective 12-month follow-up study predominantly of patients with severe COVID-19, which showed that all participants had normal thyroid function and normalization of levels of C-reactive protein upon follow-up. (PMID: 367156901008367010.1530/ETJ-22-0200)
      Lee, J., Seo, G. H. & Song, K. Beyond acute COVID-19: investigating the incidence of subacute thyroiditis in long COVID-19 in Korea. Endocrinol. Metab. 38, 455–461 (2023). (PMID: 10.3803/EnM.2023.1711)
      Lisco, G. et al. Thyroid and COVID-19: a review on pathophysiological, clinical and organizational aspects. J. Endocrinol. Invest. 44, 1801–1814 (2021). (PMID: 33765288799251610.1007/s40618-021-01554-z)
      Koulouri, O., Moran, C., Halsall, D., Chatterjee, K. & Gurnell, M. Pitfalls in the measurement and interpretation of thyroid function tests. Best Pract. Res. Clin. Endocrinol. Metab. 27, 745–762 (2013). (PMID: 24275187385760010.1016/j.beem.2013.10.003)
      Hung, I. F. N. Treatment of coronavirus disease 2019. Curr. Opin. HIV AIDS 15, 336–340 (2020). (PMID: 3300295410.1097/COH.0000000000000652)
      Tortajada, C., Añón, S., Ortiz, M. M., Andreu-Ballester, J. C. & Flores, J. Interferon β-1b for patients with moderate to severe COVID-19 in the inflammatory phase of the disease. J. Med. Virol. 93, 4102–4107 (2021). (PMID: 33856708825116510.1002/jmv.26976)
      Şendur, S. N., Oğuz, S. H. & Ünlütürk, U. COVID-19 vaccination and thyroiditis. Best Pract. Res. Clin. Endocrinol. Metab. 37, 101759 (2023). A comprehensive review of the latest evidence on thyroiditis in relation to COVID-19 vaccination. (PMID: 3693399710.1016/j.beem.2023.101759)
      Triantafyllidis, K. K., Giannos, P., Stathi, D. & Kechagias, K. S. Graves’ disease following vaccination against SARS-CoV-2: a systematic review of the reported cases. Front. Endocrinol. 13, 938001 (2022). (PMID: 10.3389/fendo.2022.938001)
      Chen, K., Gao, Y. & Li, J. New-onset and relapsed Graves’ disease following COVID-19 vaccination: a comprehensive review of reported cases. Eur. J. Med. Res. 28, 232 (2023). (PMID: 374430671033957910.1186/s40001-023-01210-7)
      Watad, A., David, P., Brown, S. & Shoenfeld, Y. Autoimmune/inflammatory syndrome induced by adjuvants and thyroid autoimmunity. Front. Endocrinol. 7, 150 (2016).
      Şendur, S. N. et al. Association of human leukocyte antigen genotypes with severe acute respiratory syndrome coronavirus 2 vaccine-induced subacute thyroiditis. Thyroid 32, 640–647 (2022). (PMID: 3538747310.1089/thy.2022.0010)
      Kyriacou, A., Ioakim, S. & Syed, A. A. COVID-19 vaccination and a severe pain in the neck. Eur. J. Intern. Med. 94, 95–96 (2021). (PMID: 34690055852086210.1016/j.ejim.2021.10.008)
      Ippolito, S. et al. SARS-CoV-2 vaccine-associated subacute thyroiditis: insights from a systematic review. J. Endocrinol. Invest. 45, 1189–1200 (2022). (PMID: 35094372880055410.1007/s40618-022-01747-0)
      di Filippo, L. et al. Distinct clinical features of post-COVID-19 vaccination early-onset graves’ disease. J. Clin. Endocrinol. Metab. 108, 107–113 (2022). (PMID: 3613023410.1210/clinem/dgac550)
      Wong, C. K. H. et al. Risk of thyroid dysfunction associated with mRNA and inactivated COVID-19 vaccines: a population-based study of 2.3 million vaccine recipients. BMC Med. 20, 339 (2022). (PMID: 36229814956071810.1186/s12916-022-02548-1)
      Lui, D. T. W. et al. Effect of COVID-19 vaccines on thyroid function and autoimmunity and effect of thyroid autoimmunity on antibody response. J. Clin. Endocrinol. Metab. 107, e3781–e3789 (2022). (PMID: 3567909310.1210/clinem/dgac355)
      Gorshtein, A., Turjeman, A., Duskin-Bitan, H., Leibovici, L. & Robenshtok, E. Graves’ disease following COVID-19 vaccination: a population-based, matched case-control study. J. Clin. Endocrinol. Metab. 109, e508–e512 (2023). (PMID: 10.1210/clinem/dgad582)
      Endo, M. et al. The incidence of Graves’ hyperthyroidism before and after COVID-19 messenger RNA vaccination. Endocr. Pract. 29, 618–622 (2023). (PMID: 3739104210.1016/j.eprac.2023.05.005)
      Wong, C. H. et al. Effect of inactivated and mRNA COVID-19 vaccination on thyroid function among patients treated for hyperthyroidism. J. Clin. Endocrinol. Metab. 108, e76–e88 (2023). (PMID: 3645315410.1210/clinem/dgac684)
      Xu, S. et al. Inactivated SARS-CoV-2 vaccination does not disturb the clinical course of Graves’ disease: an observational cohort study. Vaccine 41, 5648–5654 (2023). (PMID: 3754482610.1016/j.vaccine.2023.07.053)
      Xiong, X. et al. Safety of inactivated and mRNA COVID-19 vaccination among patients treated for hypothyroidism: a population-based cohort study. Thyroid 32, 505–514 (2022). (PMID: 3521651710.1089/thy.2021.0684)
      Oğuz, S. H. et al. SARS-CoV-2 vaccine-induced thyroiditis: safety of revaccinations and clinical follow-up. J. Clin. Endocrinol. Metab. 107, e1823–e1834 (2022). (PMID: 3510062210.1210/clinem/dgac049)
      Chee, Y. J. et al. SARS-CoV-2 mRNA vaccination and Graves’ disease: a report of 12 cases and review of the literature. J. Clin. Endocrinol. Metab. 107, 2324–2330 (2022). (PMID: 10.1210/clinem/dgac119)
      Rossetti, C. L. et al. COVID-19 and thyroid function: what do we know so far? Front. Endocrinol. 13, 1041676 (2022). (PMID: 10.3389/fendo.2022.1041676)
      Chen, M., Zhou, W. & Xu, W. Thyroid function analysis in 50 patients with COVID-19: a retrospective study. Thyroid 31, 8–11 (2020). (PMID: 3260016510.1089/thy.2020.0363)
      National Institutes of Health. Clinical spectrum of SARS-CoV-2 infection. NIH https://www.covid19treatmentguidelines.nih.gov/overview/clinical-spectrum (2023).
      Pal, R. et al. Endocrine follow-up during post-acute COVID-19: practical recommendations based on available clinical evidence. Endocr. Pract. 28, 425–432 (2022). (PMID: 35158058883284810.1016/j.eprac.2022.02.003)
      Ku, C. R. et al. COVID-19 vaccination for endocrine patients: a position statement from the Korean Endocrine Society. Endocrinol. Metab. 36, 757–765 (2021). (PMID: 10.3803/EnM.2021.404)
    • Accession Number:
      0 (COVID-19 Vaccines)
    • Publication Date:
      Date Created: 20240212 Date Completed: 20240510 Latest Revision: 20240710
    • Publication Date:
      20240711
    • Accession Number:
      10.1038/s41574-023-00946-w
    • Accession Number:
      38347167