Palmitic acid in type 2 diabetes mellitus promotes atherosclerotic plaque vulnerability via macrophage Dll4 signaling.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Nature Pub. Group Country of Publication: England NLM ID: 101528555 Publication Model: Electronic Cited Medium: Internet ISSN: 2041-1723 (Electronic) Linking ISSN: 20411723 NLM ISO Abbreviation: Nat Commun Subsets: MEDLINE
    • Publication Information:
      Original Publication: [London] : Nature Pub. Group
    • Subject Terms:
    • Abstract:
      Patients with Type 2 Diabetes Mellitus are increasingly susceptible to atherosclerotic plaque vulnerability, leading to severe cardiovascular events. In this study, we demonstrate that elevated serum levels of palmitic acid, a type of saturated fatty acid, are significantly linked to this enhanced vulnerability in patients with Type 2 Diabetes Mellitus. Through a combination of human cohort studies and animal models, our research identifies a key mechanistic pathway: palmitic acid induces macrophage Delta-like ligand 4 signaling, which in turn triggers senescence in vascular smooth muscle cells. This process is critical for plaque instability due to reduced collagen synthesis and deposition. Importantly, our findings reveal that macrophage-specific knockout of Delta-like ligand 4 in atherosclerotic mice leads to reduced plaque burden and improved stability, highlighting the potential of targeting this pathway. These insights offer a promising direction for developing therapeutic strategies to mitigate cardiovascular risks in patients with Type 2 Diabetes Mellitus.
      (© 2024. The Author(s).)
    • References:
      Schmidt, A. M. Diabetes mellitus and cardiovascular disease. Arterioscler. Thromb. Vasc. Biol. 39, 558–568 (2019). (PMID: 10.1161/ATVBAHA.119.310961307867416532416)
      Yurdagul, A. Jr Crosstalk between macrophages and vascular smooth muscle cells in atherosclerotic plaque stability. Arterioscler. Thromb. Vasc. Biol. 42, 372–380 (2022). (PMID: 10.1161/ATVBAHA.121.316233351726058957544)
      Li, D. et al. Elevation of hemoglobin a1c increases the atherosclerotic plaque vulnerability and the visit-to-visit variability of lipid profiles in patients who underwent elective percutaneous coronary intervention. Front. Cardiovascular Med. 9, 803036 (2022). (PMID: 10.3389/fcvm.2022.803036)
      Shah, A. D. et al. Type 2 diabetes and incidence of cardiovascular diseases: a cohort study in 1·9 million people. lancet Diabetes Endocrinol. 3, 105–113 (2015). (PMID: 10.1016/S2213-8587(14)70219-0254665214303913)
      Sobczak, A. I. S., Blindauer, C. A. & Stewart, A. J. Changes in plasma free fatty acids associated with Type-2 diabetes. Nutrients 11, 2022 (2019). (PMID: 10.3390/nu11092022)
      Wang, L., Folsom, A. R., Zheng, Z. J., Pankow, J. S. & Eckfeldt, J. H. Plasma fatty acid composition and incidence of diabetes in middle-aged adults: the Atherosclerosis Risk in Communities (ARIC) Study. Am. J. Clin. Nutr. 78, 91–98 (2003). (PMID: 10.1093/ajcn/78.1.9112816776)
      Bot, I., Shi, G. P. & Kovanen, P. T. Mast cells as effectors in atherosclerosis. Arterioscler. Thromb. Vasc. Biol. 35, 265–271 (2015). (PMID: 10.1161/ATVBAHA.114.30357025104798)
      Moore, K. J. & Tabas, I. Macrophages in the pathogenesis of atherosclerosis. Cell 145, 341–355 (2011). (PMID: 10.1016/j.cell.2011.04.005215297103111065)
      Ortiz-Masiá, D. et al. M1 macrophages activate notch signalling in epithelial cells: relevance in Crohn’s disease. J. Crohn’s colitis 10, 582–592 (2016). (PMID: 10.1093/ecco-jcc/jjw009)
      Xing, Y. et al. Advanced glycation end products induce atherosclerosis via rage/tlr4 signaling mediated-m1 macrophage polarization-dependent vascular smooth muscle cell phenotypic conversion. Oxid. Med. Cell. Longev. 2022, 9763377 (2022). (PMID: 10.1155/2022/9763377350699828776434)
      Ma, Y. et al. Rivaroxaban suppresses atherosclerosis by inhibiting fxa-induced macrophage m1 polarization-mediated phenotypic conversion of vascular smooth muscle cells. Front. Cardiovascular Med. 8, 739212 (2021). (PMID: 10.3389/fcvm.2021.739212)
      Cao, J., Zhang, K., Zheng, J. & Dong, R. MicroRNA-146a and -21 cooperate to regulate vascular smooth muscle cell proliferation via modulation of the Notch signaling pathway. Mol. Med. Rep. 11, 2889–2895 (2015). (PMID: 10.3892/mmr.2014.310725523239)
      Grootaert, M. O. J., Finigan, A., Figg, N. L., Uryga, A. K. & Bennett, M. R. SIRT6 protects smooth muscle cells from senescence and reduces atherosclerosis. Circ. Res. 128, 474–491 (2021). (PMID: 10.1161/CIRCRESAHA.120.31835333353368)
      Libby, P. et al. Atherosclerosis. Nat. Rev. Dis. Prim. 5, 56 (2019). (PMID: 10.1038/s41572-019-0106-z31420554)
      Palomer, X., Pizarro-Delgado, J., Barroso, E. & Vázquez-Carrera, M. Palmitic and oleic acid: the yin and yang of fatty acids in type 2 diabetes mellitus. Trends Endocrinol. Metab.: TEM 29, 178–190 (2018). (PMID: 10.1016/j.tem.2017.11.00929290500)
      Chei, C. L. et al. Serum fatty acid and risk of coronary artery disease - circulatory risk in communities study (CIRCS). Circ. J. 82, 3013–3020 (2018). (PMID: 10.1253/circj.CJ-18-024030318502)
      Duan, J. L. et al. Shear stress-induced cellular senescence blunts liver regeneration through Notch-sirtuin 1-P21/P16 axis. Hepatol. (Baltim., Md.) 75, 584–599 (2022). (PMID: 10.1002/hep.32209)
      Eid, S. et al. New insights into the mechanisms of diabetic complications: role of lipids and lipid metabolism. Diabetologia 62, 1539–1549 (2019). (PMID: 10.1007/s00125-019-4959-1313466586679814)
      Paneni, F. & Cosentino, F. Advanced glycation endproducts and plaque instability: a link beyond diabetes. Eur. heart J. 35, 1095–1097 (2014). (PMID: 10.1093/eurheartj/eht45424179075)
      Puig, N. et al. Electronegative LDL is associated with plaque vulnerability in patients with ischemic stroke and carotid atherosclerosis. Antioxid. (Basel, Switz.) 12, 438 (2023).
      Yang, J. et al. Preoperative oral carbohydrate levels in patients with type 2 diabetes mellitus: the clinical guiding significance of free fatty acids. Front. Surg. 9, 814540 (2022). (PMID: 10.3389/fsurg.2022.814540357117039195184)
      Boden, G. Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. Diabetes 46, 3–10 (1997). (PMID: 10.2337/diab.46.1.38971073)
      Adiels, M., Olofsson, S. O., Taskinen, M. R. & Borén, J. Overproduction of very low-density lipoproteins is the hallmark of the dyslipidemia in the metabolic syndrome. Arterioscler. Thromb. Vasc. Biol. 28, 1225–1236 (2008). (PMID: 10.1161/ATVBAHA.107.16019218565848)
      Praagman, J. et al. Dietary saturated fatty acids and coronary heart disease risk in a dutch middle-aged and elderly population. Arterioscler. Thromb. Vasc. Biol. 36, 2011–2018 (2016). (PMID: 10.1161/ATVBAHA.116.30757827417581)
      Talbot, N. A., Wheeler-Jones, C. P. & Cleasby, M. E. Palmitoleic acid prevents palmitic acid-induced macrophage activation and consequent p38 MAPK-mediated skeletal muscle insulin resistance. Mol. Cell. Endocrinol. 393, 129–142 (2014). (PMID: 10.1016/j.mce.2014.06.010249737674148479)
      Xia, W., Lu, Z., Chen, W., Zhou, J. & Zhao, Y. Excess fatty acids induce pancreatic acinar cell pyroptosis through macrophage M1 polarization. BMC Gastroenterol. 22, 72 (2022). (PMID: 10.1186/s12876-022-02146-8351831198858517)
      Korbecki, J. & Bajdak-Rusinek, K. The effect of palmitic acid on inflammatory response in macrophages: an overview of molecular mechanisms. Inflamm. Res.: Off. J. Eur. Histamine Res. Soc. 68, 915–932 (2019). (PMID: 10.1007/s00011-019-01273-5)
      Xia, S., Menden, H. L., Korfhagen, T. R., Kume, T. & Sampath, V. Endothelial immune activation programmes cell-fate decisions and angiogenesis by inducing angiogenesis regulator DLL4 through TLR4-ERK-FOXC2 signalling. J. Physiol. 596, 1397–1417 (2018). (PMID: 10.1113/JP275453293803705899978)
      Roux, P. P. & Blenis, J. ERK and p38 MAPK-activated protein kinases: a family of protein kinases with diverse biological functions. Microbiol. Mol. Biol. Rev.: MMBR 68, 320–344 (2004). (PMID: 10.1128/MMBR.68.2.320-344.200415187187419926)
      Kopan, R. & Ilagan, M. X. The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137, 216–233 (2009). (PMID: 10.1016/j.cell.2009.03.045193796902827930)
      Iso, T., Kedes, L. & Hamamori, Y. HES and HERP families: multiple effectors of the Notch signaling pathway. J. Cell. Physiol. 194, 237–255 (2003). (PMID: 10.1002/jcp.1020812548545)
      Gorenne, I., Kavurma, M., Scott, S. & Bennett, M. Vascular smooth muscle cell senescence in atherosclerosis. Cardiovascular Res. 72, 9–17 (2006). (PMID: 10.1016/j.cardiores.2006.06.004)
      Wang, J. et al. Vascular smooth muscle cell senescence promotes atherosclerosis and features of plaque vulnerability.Circulation 132, 1909–1919 (2015). (PMID: 10.1161/CIRCULATIONAHA.115.01645726416809)
      Montalescot, G. et al. 2013 ESC guidelines on the management of stable coronary artery disease: the Task Force on the management of stable coronary artery disease of the European Society of Cardiology. Eur. heart J. 34, 2949–3003 (2013). (PMID: 10.1093/eurheartj/eht29623996286)
      Stone, G. W. et al. Percutaneous coronary intervention for vulnerable coronary atherosclerotic plaque. J. Am. Coll. Cardiol. 76, 2289–2301 (2020). (PMID: 10.1016/j.jacc.2020.09.54733069847)
      Jin, F. et al. Acipimox attenuates atherosclerosis and enhances plaque stability in ApoE-deficient mice fed a palmitate-rich diet. Biochem Biophys. Res. Commun. 428, 86–92 (2012). (PMID: 10.1016/j.bbrc.2012.10.01123058919)
      Miao, G. et al. Vascular smooth muscle cell c-Fos is critical for foam cell formation and atherosclerosis. Metab.: Clin. Exp. 132, 155213 (2022). (PMID: 10.1016/j.metabol.2022.15521335513168)
      Kobayashi, M., Inoue, K., Warabi, E., Minami, T. & Kodama, T. A simple method of isolating mouse aortic endothelial cells. J. Atheroscler. Thromb. 12, 138–142 (2005). (PMID: 10.5551/jat.12.13816020913)
      Maor, I., Hayek, T., Hirsh, M., Iancu, T. C. & Aviram, M. Macrophage-released proteoglycans enhance LDL aggregation: studies in aorta from apolipoprotein E-deficient mice. Atherosclerosis 150, 91–101 (2000). (PMID: 10.1016/S0021-9150(99)00390-110781639)
      Debacq-Chainiaux, F., Erusalimsky, J. D., Campisi, J. & Toussaint, O. Protocols to detect senescence-associated beta-galactosidase (SA-betagal) activity, a biomarker of senescent cells in culture and in vivo. Nat. Protoc. 4, 1798–1806 (2009). (PMID: 10.1038/nprot.2009.19120010931)
    • Accession Number:
      0 (Apolipoproteins E)
      2V16EO95H1 (Palmitic Acid)
      0 (DLL4 protein, human)
      0 (DLL4 protein, mouse)
    • Publication Date:
      Date Created: 20240212 Date Completed: 20240217 Latest Revision: 20240217
    • Publication Date:
      20240217
    • Accession Number:
      PMC10861578
    • Accession Number:
      10.1038/s41467-024-45582-8
    • Accession Number:
      38346959