Sample preparation for fatty acid analysis in biological samples with mass spectrometry-based strategies.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Author(s): Yang L;Yang L; Yuan J; Yuan J; Yu B; Yu B; Hu S; Hu S; Bai Y; Bai Y
  • Source:
    Analytical and bioanalytical chemistry [Anal Bioanal Chem] 2024 Apr; Vol. 416 (9), pp. 2371-2387. Date of Electronic Publication: 2024 Feb 06.
  • Publication Type:
    Journal Article; Review
  • Language:
    English
  • Additional Information
    • Source:
      Publisher: Springer-Verlag Country of Publication: Germany NLM ID: 101134327 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1618-2650 (Electronic) Linking ISSN: 16182642 NLM ISO Abbreviation: Anal Bioanal Chem Subsets: MEDLINE
    • Publication Information:
      Original Publication: Heidelberg : Springer-Verlag, 2002-
    • Subject Terms:
    • Abstract:
      Fatty acids (FAs) have attracted many interests for their pivotal roles in many biological processes. Imbalance of FAs is related to a variety of diseases, which makes the measurement of them important in biological samples. Over the past two decades, mass spectrometry (MS) has become an indispensable technique for the analysis of FAs owing to its high sensitivity and precision. Due to complex matrix effect of biological samples and inherent poor ionization efficiency of FAs in MS, sample preparation including extraction and chemical derivatization prior to analysis are often employed. Here, we describe an updated overview of FA extraction techniques, as well as representative derivatization methods utilized in different MS platforms including gas chromatography-MS, liquid chromatography-MS, and mass spectrometry imaging based on different chain lengths of FAs. Derivatization strategies for the identification of double bond location in unsaturated FAs are also summarized and highlighted. The advantages, disadvantages, and prospects of these methods are compared and discussed. This review provides the development and valuable information for sample pretreatment approaches and qualitative and quantitative analysis of interested FAs using different MS-based platforms in complex biological matrices. Finally, the challenges of FA analysis are summarized and the future perspectives are prospected.
      (© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature.)
    • References:
      Currie E, Schulze A, Zechner R, Walther TC, Farese RV Jr. Cellular fatty acid metabolism and cancer. Cell Metab. 2013;18(2):153–61. (PMID: 23791484374256910.1016/j.cmet.2013.05.017)
      Chiu H-H, Kuo C-H. Gas chromatography-mass spectrometry-based analytical strategies for fatty acid analysis in biological samples. J Food Drug Anal. 2020;28(1):60–73. (PMID: 3188360910.1016/j.jfda.2019.10.003)
      Rooks MG, Garrett WS. Gut microbiota, metabolites and host immunity. Nat Rev Immunol. 2016;16(6):341–52. (PMID: 27231050554123210.1038/nri.2016.42)
      Sternberg F, Sternberg C, Dunkel A, Beikbaghban T, Gregor A, Szarzynski A, et al. Ketogenic diets composed of long-chain and medium-chain fatty acids induce cardiac fibrosis in mice. Mol Metab. 2023;72:101711. (PMID: 369584221012205110.1016/j.molmet.2023.101711)
      Jiang L-P, Sun H-Z. Long-chain saturated fatty acids and its interaction with insulin resistance and the risk of nonalcoholic fatty liver disease in type 2 diabetes in Chinese. Front Endocrinol. 2022;13:1051807. (PMID: 10.3389/fendo.2022.1051807)
      Nwagbo U, Bernstein PS. Understanding the roles of very-long-chain polyunsaturated fatty acids (VLC-PUFAs) in eye health. Nutrients. 2023;15(14):3096. (PMID: 375135141038306910.3390/nu15143096)
      Chen C, Liao J, Xia Y, Liu X, Jones R, Haran J, et al. Gut microbiota regulate Alzheimer’s disease pathologies and cognitive disorders via PUFA-associated neuroinflammation. Gut. 2022;71(11):2233–52. (PMID: 3501719910.1136/gutjnl-2021-326269)
      Brown TJ, Brainard J, Song F, Wang X, Abdelhamid A, Hooper L, et al. Omega-3, omega-6, and total dietary polyunsaturated fat for prevention and treatment of type 2 diabetes mellitus: systematic review and meta-analysis of randomised controlled trials. Bmj-British Med J. 2019;366:14697.
      Wu H, Han Y, Sillke YR, Deng H, Siddiqu S, Treese C, et al. Lipid droplet-dependent fatty acid metabolism controls the immune suppressive phenotype of tumor-associated macrophages. EMBO Mol Med. 2019;11(11):e10698. (PMID: 31602788683556010.15252/emmm.201910698)
      Abdelhamid AS, Brown TJ, Brainard JS, Biswas P, Thorpe GC, Moore HJ et al. Omega-3 fatty acids for the primary and secondary prevention of cardiovascular disease. Cochrane Database Syst Rev. 2020(3):CD003177.
      Xiang L, Zhu L, Huang Y, Cai Z. Application of derivatization in fatty acids and fatty acyls detection: mass spectrometry-based targeted lipidomics. Small Methods. 2020;4(8):2000160. (PMID: 10.1002/smtd.202000160)
      Chen Y, Xie C, Wang X, Cao G, Ru Y, Song Y, et al. 3-Acetylpyridine on-tissue Paterno-Buchi derivatization enabling high coverage lipid C=C location-resolved MS imaging in biological tissues. Anal Chem. 2022;94(44):15367–76. (PMID: 3628654310.1021/acs.analchem.2c03089)
      Zhang G, Zhang J, DeHoog RJ, Pennathur S, Anderton CR, Venkatachalam MA, et al. DESI-MSI and METASPACE indicates lipid abnormalities and altered mitochondrial membrane components in diabetic renal proximal tubules. Metabolomics. 2020;16(1):11. (PMID: 31925564730134310.1007/s11306-020-1637-8)
      Zhang C, Kikushima K, Endo M, Kahyo T, Horikawa M, Matsudaira T, et al. Imaging and manipulation of plasma membrane fatty acid clusters using TOF-SIMS combined optogenetics. Cells. 2023;12(1):10. (PMID: 10.3390/cells12010010)
      Halket JM, Zaikin VG. Derivatization in mass spectrometry - 1 Silylation. Eur J Mass Spectrom. 2003;9(1):1–21. (PMID: 10.1255/ejms.527)
      Halket JM. Zaikin VG Derivatization in mass spectrometry-3 Alkylation (arylation). Eur J Mass Spectrom. 2004;10(1):1–19. (PMID: 10.1255/ejms.619)
      Zaikin VG, Halket JM. Derivatization in mass spectrometry - 2 Acylation. Eur J Mass Spectrom. 2003;9(5):421–34. (PMID: 10.1255/ejms.576)
      Chen C, Li R, Wu H. Recent progress in the analysis of unsaturated fatty acids in biological samples by chemical derivatization-based chromatography-mass spectrometry methods. J Chromatogr B. 2023;1215:123572. (PMID: 10.1016/j.jchromb.2022.123572)
      Folch J, Lees M, Stanley GHS. A simple method for the isolation and purification of total lipids from animal tissues. J Biol Chem. 1957;226(1):497–509. (PMID: 1342878110.1016/S0021-9258(18)64849-5)
      Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37(8):911–7. (PMID: 1367137810.1139/o59-099)
      Saini RK, Prasad P, Shang X, Keum Y-S. Advances in lipid extraction methods-a review. Int J Mol Sci. 2021;22(24):13643. (PMID: 34948437870432710.3390/ijms222413643)
      Matyash V, Liebisch G, Kurzchalia TV, Shevchenko A, Schwudke D. Lipid extraction by methyl-tert-butyl ether for high-throughput lipidomics. J Lipid Res. 2008;49(5):1137–46. (PMID: 18281723231144210.1194/jlr.D700041-JLR200)
      Marmer WN, Maxwell RJ. Dry column method for the quantitative extraction and simultaneous class separation of lipids from muscle-tissue. Lipids. 1981;16(5):365–71. (PMID: 725384410.1007/BF02534964)
      Lofgren L, Stahlman M, Forsberg G-B, Saarinen S, Nilsson R, Hansson GI. The BUME method: a novel automated chloroform-free 96-well total lipid extraction method for blood plasma. J Lipid Res. 2012;53(8):1690–700. (PMID: 22645248354085310.1194/jlr.D023036)
      Dole VP, Meinertz H. Microdetermination of long-chain fatty acids in plasma and tissues. J Biol Chem. 1960;235(9):2595–9. (PMID: 1381728610.1016/S0021-9258(19)76920-8)
      Li F, Zhang Q, Tong Y, Jiang J, Liu J. Development and validation of a liquid chromeatography-tandem mass spectrometry method for simultaneous quantification of medium- and long-chain saturated fatty acids in hamster plasma samples. Rapid Commun Mass Spectrom. 2022;36(11):e9280. (PMID: 3522992110.1002/rcm.9280)
      Park H, Song W-Y, Cha H, Kim T-Y. Development of an optimized sample preparation method for quantification of free fatty acids in food using liquid chromatography-mass spectrometry. Sci Rep. 2021;11(1):5947. (PMID: 33723326796106410.1038/s41598-021-85288-1)
      Vargas-Munoz MA, Cerda V, Turnes Palomino G, Palacio E. Determination of long-chain fatty acids in anaerobic digester supernatant and olive mill wastewater exploiting an in-syringe dispersive liquid-liquid microextraction and derivatization-free GC-MS method. Anal Bioanal Chem. 2021;413(15):3833–45. (PMID: 3393900410.1007/s00216-021-03338-z)
      Ferracane A, Aloisi I, Galletta M, Zoccali M, Tranchida PQ, Micalizzi G, et al. Automated sample preparation and fast GC-MS determination of fatty acids in blood samples and dietary supplements. Anal Bioanal Chem. 2022;414(29–30):8423–35. (PMID: 3630855510.1007/s00216-022-04379-8)
      Pal P, Nayak J. Acetic acid production and purification: critical review towards process intensification. Sep Purif Rev. 2017;46(1):44–61. (PMID: 10.1080/15422119.2016.1185017)
      Yao L, Davidson EA, Shaikh MW, Forsyth CB, Prenni JE, Broeckling CD. Quantitative analysis of short-chain fatty acids in human plasma and serum by GC-MS. Anal Bioanal Chem. 2022;414(15):4391–9. (PMID: 3509176010.1007/s00216-021-03785-8)
      Kim K-S, Lee Y, Chae W, Cho J-Y. An improved method to quantify short-chain fatty acids in biological samples using gas chromatography-mass spectrometry. Metabolites. 2022;12(6):525. (PMID: 35736458922865310.3390/metabo12060525)
      Zhu J-H, Mao Q, Wang S-Y, Liu H, Zhou S-S, Zhang W, et al. Optimization and validation of direct gas chromatography-mass spectrometry method for simultaneous quantification of ten short-chain acids in rat feces. J Chromatogr A. 2022;1669:462958. (PMID: 3530357410.1016/j.chroma.2022.462958)
      Rohde JK, Fuh MM, Evangelakos I, Pauly MJ, Schaltenberg N, Siracusa F, et al. A gas chromatography mass spectrometry-based method for the quantification of short chain fatty acids. Metabolites. 2022;12(2):170. (PMID: 35208244887599410.3390/metabo12020170)
      Assadi F, Mogaddam MRA, Farajzadeh MA, Shayanfar A, Nemati M. Development of a green in-situ derivatization and deep eutectic solvent-based dispersive liquid-liquid microextraction method for analysis of short-chain fatty acids in beverage samples optimized by response surface methodology. Microchem J. 2021;166:106226. (PMID: 10.1016/j.microc.2021.106226)
      Foote AP. TECHNICAL NOTE: Analysis of volatile fatty acids in rumen fluid by gas chromatography mass spectrometry using a dimethyl carbonate extraction. J Anim Sci. 2022;100(8):1–7. (PMID: 10.1093/jas/skac207)
      Yang C, Li J, Wang S, Wang Y, Jia J, Wu W, et al. Determination of free fatty acids in Antarctic krill meals based on matrix solid phase dispersion. Food Chem. 2022;384:132620. (PMID: 3541377610.1016/j.foodchem.2022.132620)
      Jin Z, Zou G, Mao X, Guan S, Guan W. Rapid determination of free fatty acids in the extracellular medium of cyanobacteria by stir bar sorptive extraction (SBSE) coupled to ultra-high-performance liquid chromatography - triple quadrupole tandem mass spectrometry (UHPLC-MS/MS). Anal Lett. 2021;54(17):2801–11. (PMID: 10.1080/00032719.2021.1891547)
      Deng G, Xie L, Xu S, Kang X, Ma J. Fiber nanoarchitectonics for pre-treatments in facile detection of short-chain fatty acids in waste water and faecal samples. Polymers. 2021;13(22):3906. (PMID: 34833201862473010.3390/polym13223906)
      Kang S, Yun J, Park H-Y, Lee J-E. Analytical factors for eight short-chain fatty acid analyses in mouse feces through headspace solid-phase microextraction-triple quadrupole gas chromatography tandem mass spectrometry. Anal Bioanal Chem. 2023;415(25):6227–35. (PMID: 375873141055837410.1007/s00216-023-04895-1)
      Tintrop LK, Lieske-Overgrand JR, Wickneswaran K, Abis R, Brunstermann R, Jochmann MA, et al. Isotope-labeling in situ derivatization and HS-SPME arrow GC-MS/MS for simultaneous determination of fatty acids and fatty acid methyl esters in aqueous matrices. Anal Bioanal Chem. 2023;415:6525–36. (PMID: 377407511056795710.1007/s00216-023-04930-1)
      Zhang S, Wang H, Zhu M-J. A sensitive GC/MS detection method for analyzing microbial metabolites short chain fatty acids in fecal and serum samples. Talanta. 2019;196:249–54. (PMID: 3068336010.1016/j.talanta.2018.12.049)
      Furuhashi T, Sugitate K, Nakai T, Jikumaru Y, Ishihara G. Rapid profiling method for mammalian feces short chain fatty acids by GC-MS. Anal Biochem. 2018;543:51–4. (PMID: 2922170610.1016/j.ab.2017.12.001)
      Zheng X, Qiu Y, Zhong W, Baxter S, Su M, Li Q, et al. A targeted metabolomic protocol for short-chain fatty acids and branched-chain amino acids. Metabolomics. 2013;9(4):818–27. (PMID: 23997757375660510.1007/s11306-013-0500-6)
      Tomcik K, Ibarra RA, Sadhukhan S, Han Y, Tochtrop GP, Zhang G-F. Isotopomer enrichment assay for very short chain fatty acids and its metabolic applications. Anal Biochem. 2011;410(1):110–7. (PMID: 2111231510.1016/j.ab.2010.11.030)
      Fu Z, Jia Q, Zhang H, Kang L, Sun X, Zhang M, et al. Simultaneous quantification of eleven short-chain fatty acids by derivatization and solid phase microextraction - gas chromatography tandem mass spectrometry. J Chromatogr A. 2022;1661:462680. (PMID: 3487931110.1016/j.chroma.2021.462680)
      Gu H, Jasbi P, Patterson J, Jin Y. Enhanced detection of short-chain fatty acids using gas chromatography mass spectrometry. Curr Protocols. 2021;1(6): e177. (PMID: 10.1002/cpz1.177)
      Xia F, Guo L, Cui P, Xu Q, Huang J, Zhou H, et al. A sensitive and accurate GC-MS method for analyzing microbial metabolites short chain fatty acids and their hydroxylated derivatives in newborn fecal samples. J Pharm Biomed Anal. 2023;223:115148. (PMID: 3640334710.1016/j.jpba.2022.115148)
      Han J, Lin K, Sequeira C, Borchers CH. An isotope-labeled chemical derivatization method for the quantitation of short-chain fatty acids in human feces by liquid chromatography-tandem mass spectrometry. Anal Chim Acta. 2015;854:86–94. (PMID: 2547987110.1016/j.aca.2014.11.015)
      Peters R, Hellenbrand J, Mengerink Y, Van der Wal S. On-line determination of carboxylic acids, aldehydes and ketones by high-performance liquid chromatography-diode array detection-atmospheric pressure chemical ionisation mass spectrometry after derivatization with 2-nitrophenylhydrazine. J Chromatogr A. 2004;1031(1–2):35–50. (PMID: 1505856610.1016/j.chroma.2003.10.100)
      Zeng M, Cao H. Fast quantification of short chain fatty acids and ketone bodies by liquid chromatography-tandem mass spectrometry after facile derivatization coupled with liquid-liquid extraction. J Chromatogr B. 2018;1083:137–45. (PMID: 10.1016/j.jchromb.2018.02.040)
      Chan JCY, Kioh DYQ, Yap GC, Lee BW, Chan ECY. A novel LCMSMS method for quantitative measurement of short-chain fatty acids in human stool derivatized with C-12- and C-13-labelled aniline. J Pharm Biomed Anal. 2017;138:43–53. (PMID: 2817863310.1016/j.jpba.2017.01.044)
      Shafaei A, Vamathevan V, Pandohee J, Lawler NG, Broadhurst D, Boyce MC. Sensitive and quantitative determination of short-chain fatty acids in human serum using liquid chromatography mass spectrometry. Anal Bioanal Chem. 2021;413(25):6333–42. (PMID: 34382104848787810.1007/s00216-021-03589-w)
      Valdivia-Garcia MA, Chappell KE, Camuzeaux S, Olmo-Garcia L, van der Sluis VH, Radhakrishnan ST, et al. Improved quantitation of short-chain carboxylic acids in human biofluids using 3-nitrophenylhydrazine derivatization and liquid chromatography with tandem mass spectrometry (LC-MS/MS). J Pharm Biomed Anal. 2022;221:115060. (PMID: 3616693310.1016/j.jpba.2022.115060)
      Chen L, Sun X, Khalsa AS, Bailey MT, Kelleher K, Spees C, et al. Accurate and reliable quantitation of short chain fatty acids from human feces by ultra high-performance liquid chromatography-high resolution mass spectrometry (UPLC-HRMS). J Pharm Biomed Anal. 2021;200:114066. (PMID: 33866297813230510.1016/j.jpba.2021.114066)
      Li C, Liu Z, Bath C, Marett L, Pryce J, Rochfort S. Optimised method for short-chain fatty acid profiling of bovine milk and serum. Molecules. 2022;27(2):436. (PMID: 35056750877833510.3390/molecules27020436)
      Calvigioni M, Bertolini A, Codini S, Mazzantini D, Panattoni A, Massimino M, et al. HPLC-MS-MS quantification of short-chain fatty acids actively secreted by probiotic strains. Front Microbiol. 2023;14:1124144. (PMID: 369372541002037510.3389/fmicb.2023.1124144)
      Fu H, Zhang Q-l, Huang X-w, Ma Z-h, Zheng X-l, Li S-l et al. A rapid and convenient derivatization method for quantitation of short-chain fatty acids in human feces by ultra-performance liquid chromatography/tandem mass spectrometry. Rapid Commun Mass Spectrom. 2020;34(9):e8730.
      Wei J, Xiang L, Li X, Song Y, Yang C, Ji F, et al. Derivatization strategy combined with parallel reaction monitoring for the characterization of short-chain fatty acids and their hydroxylated derivatives in mouse. Anal Chim Acta. 2020;1100:66–74. (PMID: 3198715410.1016/j.aca.2019.11.009)
      Song HE, Lee HY, Kim SJ, Back SH, Yoo HJ. A facile profiling method of short chain fatty acids using liquid chromatography-mass spectrometry. Metabolites. 2019;9(9):173. (PMID: 31466271678097610.3390/metabo9090173)
      Nagatomo R, Kaneko H, Kamatsuki S, Ichimura-Shimizu M, Ishimaru N, Tsuneyama K, et al. Short-chain fatty acids profiling in biological samples from a mouse model of Sjo?gren?s syndrome based on derivatized LC-MS/MS assay. J Chromatogr B. 2022;1210:123432. (PMID: 10.1016/j.jchromb.2022.123432)
      Gowda D, Li Y, Gowda SGB, Ohno M, Chiba H, Hui S-P. Determination of short-chain fatty acids by N, N-dimethylethylenediamine derivatization combined with liquid chromatography/mass spectrometry and their implication in influenza virus infection. Anal Bioanal Chem. 2022;414(22):6419–30. (PMID: 3584141510.1007/s00216-022-04217-x)
      Feng X, Liu N, Yang Y, Feng S, Wang J, Meng Q. Isotope-coded chemical derivatization method for highly accurately and sensitively quantifying short-chain fatty acids. J Agric Food Chem. 2022;70(20):6253–63. (PMID: 3554918010.1021/acs.jafc.2c01836)
      Zhang J, Yang S, Wang J, Xu Y, Zhao H, Lei J, et al. Integrated LC-MS metabolomics with dual derivatization for quantification of FFAs in fecal samples of hepatocellular carcinoma patients. J Lipid Res. 2021;62:100143. (PMID: 34710433859914910.1016/j.jlr.2021.100143)
      Forsman TT, Paulson AE, Larson EA, Looft T, Lee YJ. On-tissue chemical derivatization of volatile metabolites for matrix-assisted laser desorption/ionization mass spectrometry imaging. J Mass Spectrom. 2023;58(5):e4918. (PMID: 3704544410.1002/jms.4918)
      Zotov VA, Bessonov VV, Risnik DV. Methodological aspects of the analysis of fatty acids in biological samples. Appl Biochem Microbiol. 2022;58(1):83–95. (PMID: 10.1134/S0003683822010112)
      Ki I. Fukubayashi Y Preparation of fatty acid methyl esters for gas-liquid chromatography. J Lipid Res. 2010;51(3):635–40. (PMID: 10.1194/jlr.D001065)
      Cha D, Liu M, Zeng Z. Cheng De, Zhan G Analysis of fatty acids in lung tissues using gas chromatography-mass spectrometry preceded by derivatization-solid-phase microextraction with a novel fiber. Anal Chim Acta. 2006;572(1):47–54. (PMID: 1772346010.1016/j.aca.2006.05.014)
      Masood A, Stark KD, Salem N. A simplified and efficient method for the analysis of fatty acid methyl esters suitable for large clinical studies. J Lipid Res. 2005;46(10):2299–305. (PMID: 1606195710.1194/jlr.D500022-JLR200)
      Casado AG, Hernandez EJA, Espinosa P, Vilchez JL. Determination of total fatty acids (C-8-C-22) in sludges by gas chromatography mass spectrometry. J Chromatogr A. 1998;826(1):49–56. (PMID: 10.1016/S0021-9673(98)00725-0)
      Glaser C, Demmelmair H, Koletzko B. High-throughput analysis of fatty acid composition of plasma glycerophospholipids. J Lipid Res. 2010;51(1):216–21. (PMID: 19654422278978210.1194/jlr.D000547)
      Orozco-Solano MI, Priego-Capote F. Luque de Castro MD Analysis of esterified and nonesterified fatty acids in serum from obese individuals after intake of breakfasts prepared with oils heated at frying temperature. Anal Bioanal Chem. 2013;405(18):6117–29. (PMID: 2365745710.1007/s00216-013-7004-0)
      Muller KD, Husmann H, Nalik HP, Schomburg G. Transesterification of fatty-acids from microorganisms and human blood-serum by trimethylsulfonium hydroxide (TMSH) for GC analysis. Chromatographia. 1990;30(5–6):245–8. (PMID: 10.1007/BF02319701)
      Quehenberger O, Armando AM, Dennis EA. High sensitivity quantitative lipidomics analysis of fatty acids in biological samples by gas chromatography-mass spectrometry. Biochim Biophys Acta Mol Cell Biol Lipids. 2011;1811(11):648–56. (PMID: 10.1016/j.bbalip.2011.07.006)
      Tammekivi E, Vahur S, Kekisev O, van der Werf ID, Toom L, Herodes K, et al. Comparison of derivatization methods for the quantitative gas chromatographic analysis of oils. Anal Methods. 2019;11(28):3514–22. (PMID: 10.1039/C9AY00954J)
      Goers PE, Wittenhofer P, Ayala-Cabrera JF, Meckelmann SW. Potential of atmospheric pressure ionization sources for the analysis of free fatty acids in clinical and biological samples by gas chromatography-mass spectrometry. Anal Bioanal Chem. 2022;414(22):6621–34. (PMID: 10.1007/s00216-022-04223-z)
      Gries P, Rathore AS, Lu X, Chiou J, Huynh YB, Lodi A, et al. Automated trimethyl sulfonium hydroxide derivatization method for high-throughput fatty acid profiling by gas chromatography-mass spectrometry. Molecules. 2021;26(20):6246. (PMID: 34684827853873510.3390/molecules26206246)
      Foguet-Romero E, Samarra I, Guirro M, Riu M, Joven J, Menendez JA, et al. Optimization of a GC-MS injection-port derivatization methodology to enhance metabolomics analysis throughput in biological samples. J Proteome Res. 2022;21(11):2555–65. (PMID: 3618097110.1021/acs.jproteome.2c00119)
      Zheng S-J, Liu S-J, Zhu Q-F, Guo N, Wang Y-L, Yuan B-F, et al. Establishment of liquid chromatography retention index based on chemical labeling for metabolomic analysis. Anal Chem. 2018;90(14):8412–20. (PMID: 2992459610.1021/acs.analchem.8b00901)
      Mok HJ, Lee JW, Bandu R, Kang HS, Kim K-H, Kim KP. A rapid and sensitive profiling of free fatty acids using liquid chromatography electrospray ionization tandem mass spectrometry (LC/ESI-MS/MS) after chemical derivatization. RSC Adv. 2016;6(38):32130–9. (PMID: 10.1039/C6RA01344A)
      Jiang R, Jiao Y, Zhang P, Liu Y, Wang X, Huang Y, et al. Twin derivatization strategy for high-coverage quantification of free fatty acids by liquid chromatography-tandem mass spectrometry. Anal Chem. 2017;89(22):12223–30. (PMID: 2908769210.1021/acs.analchem.7b03020)
      Pu Q, Wang M, Jiang N, Luo Y, Li X, Hu C, et al. Novel isotope-labeled derivatization strategy for the simultaneous analysis of fatty acids and fatty alcohols and its application in idiopathic inflammatory myopathies and pancreatic cancer. Anal Chem. 2023;95(21):8197–205. (PMID: 3719122510.1021/acs.analchem.2c05558)
      Yang R, Xia F, Su H, Wan J-B. Quantitative analysis of n-3 polyunsaturated fatty acids and their metabolites by chemical isotope labeling coupled with liquid chromatography - mass spectrometry. J Chromatogr B. 2021;1172:122666. (PMID: 10.1016/j.jchromb.2021.122666)
      Wei J, Xiao X, Li K, Song Y, Huang S-K, Cai Z, et al. Derivatization strategy for semi-quantitative analysis of medium- and long-chain fatty acids using multiple reaction monitoring. Talanta. 2021;233:122464. (PMID: 3421510110.1016/j.talanta.2021.122464)
      Feng X, Wang J, Tang Z, Chen B, Hou X, Li J, et al. A strategy for accurately and sensitively quantifying free and esterified fatty acids using liquid chromatography mass spectrometry. Front Nutr. 2022;9:977076. (PMID: 35990327938181710.3389/fnut.2022.977076)
      Jian R, Zhao X, Lin Q, Xia Y. Profiling of branched-chain fatty acids via nitroxide radical-directed dissociation integrated on an LC-MS/MS workflow. Analyst. 2022;147(10):2115–23. (PMID: 3547120810.1039/D2AN00266C)
      Cheng J, Li Y, Wang Y, Zhang J, Sun T, Zhang L, et al. Quaterization derivatization with bis(pyridine) iodine tetrafluoroboride: high-sensitivity mass spectrometric analysis of unsaturated fatty acids in human thyroid tissues. Anal Chem. 2022;94(32):11185–91. (PMID: 3591621410.1021/acs.analchem.2c01519)
      Kaya I, Schembri LS, Nilsson A, Shariatgorji R, Baijnath S, Zhang X, et al. On-tissue chemical derivatization for comprehensive mapping of brain carboxyl and aldehyde metabolites by MALDI-MS imaging. J Am Soc Mass Spectrom. 2023;34(5):836–46. (PMID: 370523441016121910.1021/jasms.2c00336)
      Lu Y, Cao Y, Chen D, Zhou Y, Zhang L, Su Y, et al. An online derivatization strategy targeting carbon-carbon double bonds by laser-ablation carbon fiber ionization mass spectrometry imaging: unraveling the spatial characteristic in mountain-cultivated ginseng and garden-cultivated ginseng with different ages. Food Chem. 2023;410:135365. (PMID: 3660855810.1016/j.foodchem.2022.135365)
      Narreddula VR, McKinnon BI, Marlton SJP, Marshall DL, Boase NRB, Poad BLJ, et al. Next-generation derivatization reagents optimized for enhanced product ion formation in photodissociation-mass spectrometry of fatty acids. Analyst. 2021;146(1):156–69. (PMID: 3312500810.1039/D0AN01840F)
      Harris RA, May JC, Stinson CA, Xia Y, McLean JA. Determining double bond position in lipids using online ozonolysis coupled to liquid chromatography and ion mobility-mass spectrometry. Anal Chem. 2018;90(3):1915–24. (PMID: 29341601733145610.1021/acs.analchem.7b04007)
      Ma X, Zhang W, Li Z, Xia Y, Ouyang Z. Enabling high structural specificity to lipidomics by coupling photochemical derivatization with tandem mass spectrometry. Acc Chem Res. 2021;54(20):3873–82. (PMID: 3457046410.1021/acs.accounts.1c00419)
      Zhao Y, Zhao H, Zhao X, Jia J, Ma Q, Zhang S, et al. Identification and quantitation of C=C location isomers of unsaturated fatty acids by epoxidation reaction and tandem mass spectrometry. Anal Chem. 2017;89(19):10270–8. (PMID: 2883776810.1021/acs.analchem.7b01870)
      Thomas MC, Mitchell TW, Blanksby SJ. Ozonolysis of phospholipid double bonds during electrospray ionization: a new tool for structure determination. J Am Chem Soc. 2006;128(1):58–9. (PMID: 1639012010.1021/ja056797h)
      Ma X, Xia Y. Pinpointing double bonds in lipids by Paterno-Buchi reactions and mass spectrometry. Angew Chem-Int Edit. 2014;53(10):2592–6. (PMID: 10.1002/anie.201310699)
      Zhao J, Xie X, Lin Q, Ma X, Su P, Xia Y. Next-generation Paterno-Buchi reagents for lipid analysis by mass spectrometry. Anal Chem. 2020;92(19):13470–7. (PMID: 3284035510.1021/acs.analchem.0c02896)
      Xu T, Pi Z, Song F, Liu S, Liu Z. Benzophenone used as the photochemical reagent for pinpointing C=C locations in unsaturated lipids through shotgun and liquid chromatography-mass spectrometry approaches. Anal Chim Acta. 2018;1028:32–44. (PMID: 2988435110.1016/j.aca.2018.04.046)
      Waeldchen F, Mohr F, Wagner AH, Heiles S. Multifunctional reactive MALDI matrix enabling high-lateral resolution dual polarity MS imaging and lipid C=C position-resolved MS2 imaging. Anal Chem. 2020;92(20):14130–8. (PMID: 10.1021/acs.analchem.0c03150)
      Feng G, Hao Y, Wu L, Chen S. A visible-light activated 2+2 cycloaddition reaction enables pinpointing carbon-carbon double bonds in lipids. Chem Sci. 2020;11(27):7244–51. (PMID: 34123010815938310.1039/D0SC01149E)
      Zhao J, Fang M, Xia Y. A liquid chromatography-mass spectrometry workflow for in-depth quantitation of fatty acid double bond location isomers. J Lipid Res. 2021;62:100110. (PMID: 34437891844108810.1016/j.jlr.2021.100110)
      Xia T, Jin X, Zhang D, Wang J, Jian R. Yin H et al Alternative fatty acid desaturation pathways revealed by deep profiling of total fatty acids in RAW 264.7cell line. J Lipid Res. 2023;64(8):100410. (PMID: 374378451040790710.1016/j.jlr.2023.100410)
      Li Z, Cheng S, Lin Q, Cao W, Yang J, Zhang M, et al. Single-cell lipidomics with high structural specificity by mass spectrometry. Nat Commun. 2021;12(1):2869. (PMID: 34001877812910610.1038/s41467-021-23161-5)
      Mao R, Li W, Jia P, Ding H, Teka T, Zhang L, et al. An efficient and sensitive method on the identification of unsaturated fatty acids in biosamples: total lipid extract from bovine liver as a case study. J Chromatogr A. 2022;1675:463176. (PMID: 3563587210.1016/j.chroma.2022.463176)
      Cerrato A, Capriotti AL, Cavaliere C, Montone CM, Piovesana S, Lagana A. Novel Aza-Paterno-Buchi reaction allows pinpointing carbon-carbon double bonds in unsaturated lipids by higher collisional dissociation. Anal Chem. 2022;94(38):13117–25. (PMID: 36121000952361510.1021/acs.analchem.2c02549)
      Feng Y, Chen B, Yu Q, Li L. Identification of double bond position isomers in unsaturated lipids by m-CPBA epoxidation and mass spectrometry fragmentation. Anal Chem. 2019;91(3):1791–5. (PMID: 30608661640821510.1021/acs.analchem.8b04905)
      Kuo T-H, Chung H-H, Chang H-Y, Lin C-W, Wang M-Y, Shen T-L, et al. Deep lipidomics and molecular imaging of unsaturated lipid isomers: a universal strategy initiated by mCPBA epoxidation. Anal Chem. 2019;91(18):11905–15. (PMID: 3140832210.1021/acs.analchem.9b02667)
      Gu T-J, Feng Y, Wang D, Li L. Simultaneous multiplexed quantification and C=C localization of fatty acids with LC-MS/MS using i(s)under-barobaric m(u)under-barltiplex rea(g)under-barents for c(a)under-barrbonyl-containing compound (SUGAR) tags and C=C epoxidation. Anal Chim Acta. 2022;1225.
      Feng Y, Lv Y, Gu T-J, Chen B, Li L. Quantitative analysis and structural elucidation of fatty acids by isobaric multiplex labeling reagents for carbonyl-containing compound (SUGAR) tags and m-CPBA epoxidation. Anal Chem. 2022;94(38):13036–42. (PMID: 36099193991277410.1021/acs.analchem.2c01917)
      Zhu Z, Li X, Tang C, Shen J, Liu J, Ye Y. A derivatization strategy for comprehensive identification of 2-and 3-hy-droxyl fatty acids by LC-MS. Anal Chim Acta. 2022;1216.
      Tu A, Garrard KP, Said N, Muddiman DC. In situ detection of fatty acid C=C positional isomers by coupling on-tissue mCPBA epoxidation with infrared matrix-assisted laser desorption electrospray ionization mass spectrometry. Rapid Commun Mass Spectrom. 2021;35(13):e9119. (PMID: 33942403898890710.1002/rcm.9119)
      Zhang H, Xu M, Shi X, Liu Y, Li Z, Jagodinsky JC, et al. Quantification and molecular imaging of fatty acid isomers from complex biological samples by mass spectrometry. Chem Sci. 2021;12(23):8115–22. (PMID: 34194701820812510.1039/D1SC01614H)
      Zhang J, Zhang Z, Jiang T, Zhang Z, Zhang W, Xu W. Rapidly identifying and quantifying of unsaturated lipids with carbon-carbon double bond isomers by photoepoxidation. Talanta. 2023;260:124575. (PMID: 3714182110.1016/j.talanta.2023.124575)
      Hu T, Sun Y, Li H, Du P, Liu L, An Z. Dual derivatization strategy for the comprehensive quantification and double bond location characterization of fatty acids by ultra-high performance liquid chromatography-tandem mass spectrometry. J Chromatogr A. 2021;1639:461939. (PMID: 3353000910.1016/j.chroma.2021.461939)
      Zhang B, Wang Y, Zhou B-W, Cheng J, Xu Q, Zhang L, et al. Chloramine-T-enabled mass spectrometric analysis of C=C isomers of unsaturated fatty acids and phosphatidylcholines in human thyroids. Anal Chem. 2022;94(16):6216–24. (PMID: 3542078310.1021/acs.analchem.1c05607)
      Armbruster MR, Mostafa ME, Caldwell RN, Grady SF, Arnatt CK, Edwards JL. Isobaric 6-plex and tosyl dual tagging for the determination of positional isomers and quantitation of monounsaturated fatty acids using rapid UHPLC-MS/MS. Analyst. 2023;148(2):297–304. (PMID: 3653392010.1039/D2AN01699K)
      Young RSE, Flakelar CL, Narreddula VR, Jekimovs LJ, Menzel JP, Poad BLJ, et al. Identification of carbon-carbon double bond stereochemistry in unsaturated fatty acids by charge-remote fragmentation of fixed-charge derivatives. Anal Chem. 2022;94(46):16180–8. (PMID: 3634286910.1021/acs.analchem.2c03625)
      Koktava M, Valasek J, Bezdekova D, Prysiazhnyi V, Adamova B, Benes P, et al. Metal oxide laser ionization mass spectrometry imaging of fatty acids and their double bond positional isomers. Anal Chem. 2022;94(25):8928–36. (PMID: 3571324410.1021/acs.analchem.2c00551)
    • Grant Information:
      202303021211109 Natural Science Foundation of Shanxi Province; 22125401 National Natural Science Foundation of China; 81973287 National Natural Science Foundation of China
    • Contributed Indexing:
      Keywords: Derivatization; Extraction; Fatty acids; Mass spectrometry
    • Accession Number:
      0 (Fatty Acids)
      0 (Fatty Acids, Unsaturated)
    • Publication Date:
      Date Created: 20240206 Date Completed: 20240321 Latest Revision: 20240711
    • Publication Date:
      20240711
    • Accession Number:
      10.1007/s00216-024-05185-0
    • Accession Number:
      38319358