Gene expression, micro-CT and histomorphometrical analysis of sinus floor augmentation with biphasic calcium phosphate and deproteinized bovine bone mineral: A randomized controlled clinical trial.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: John Wiley & Sons, Inc Country of Publication: United States NLM ID: 100888977 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1708-8208 (Electronic) Linking ISSN: 15230899 NLM ISO Abbreviation: Clin Implant Dent Relat Res Subsets: MEDLINE
    • Publication Information:
      Publication: [2013-] : Malden, MA : John Wiley & Sons, Inc
      Original Publication: Hamilton, Ont. : B.C. Decker, c1999-
    • Subject Terms:
    • Abstract:
      Aims: The aim of this randomized controlled clinical trial was to compare the gene expression, micro-CT, histomorphometrical analysis between biphasic calcium phosphate (BCP) of 70/30 ratio and deproteinized bovine bone mineral (DBBM) in sinus augmentation.
      Materials and Methods: Twenty-four patients in need for sinus floor augmentation through lateral approach were randomized into BCP 70/30 ratio or DBBM. After at least 6 months of healing, a total of 24 bone specimens were collected from the entire height of the augmented bone at the area of implant placement and underwent micro-CT, histomorphometric and gene expression analysis. The 12 bone specimens of BCP 70/30 ratio were equally allocated to micro-CT and histologic analysis (test group, n = 6) and gene expression analysis (test group, n = 6). Similarly, the 12 bone specimens of DBBM were also allocated to micro-CT and histologic analysis (control group, n = 6) and gene expression analysis (control group, n = 6). The newly formed bone, remaining graft materials and relative change in gene expression of four target genes were assessed.
      Results: The micro-CT results showed no statistically significant difference in the ratio of bone volume to total volume (BV/TV ratio) for the two groups (BCP 41.51% vs. DBBM 40.97%) and the same was true for residual graft material to total volume (GV/TV ratio, BCP 9.97% vs. DBBM 14.41%). Similarly, no significant difference was shown in the histological analysis in terms of bone formation, (BCP 31.43% vs. DBBM was 30.09%) and residual graft area (DBBM 40.76% vs. BCP 45.06%). With regards to gene expression, the level of ALP was lower in both groups of bone grafted specimens compared with the native bone. On the contrary, the level of OSX, IL-1B and TRAP was higher in augmented bone of both groups compared with the native bone. However, the relative difference in all gene expressions between BCP and DBBM group was not significant.
      Conclusions: The BCP, HA/β-TCP ratio of 70/30 presented similar histological and micro-CT outcomes in terms of new bone formation and residual graft particles with DBBM. The gene expression analysis revealed different gene expression patterns between augmented and native bone, but showed no significant difference between the two biomaterials.
      (© 2024 Wiley Periodicals LLC.)
    • References:
      Sharan A, Madjar D. Maxillary sinus pneumatization following extractions: a radiographic study. Int J Oral Maxillofac Implants. 2008;23(1):48‐56.
      Wehrbein H, Diedrich P. Progressive pneumatization of the basal maxillary sinus after extraction and space closure. Fortschr Kieferorthop. 1992;53(2):77‐83.
      Acharya A, Hao J, Mattheos N, Chau A, Shirke P, Lang NP. Residual ridge dimensions at edentulous maxillary first molar sites and periodontal bone loss among two ethnic cohorts seeking tooth replacement. Clin Oral Implants Res. 2014;25(12):1386‐1394.
      Cha HS, Kim JW, Hwang JH, Ahn KM. Frequency of bone graft in implant surgery. Maxillofac Plast Reconstr Surg. 2016;38(1):19‐23.
      Tatum H Jr. Maxillary and sinus implant reconstructions. Dent Clin N Am. 1986;30(2):207‐229.
      Riben C, Thor A. The maxillary sinus membrane elevation procedure: augmentation of bone around dental implants without grafts—a review of a surgical technique. Int J Dent. 2012;2012:105483.
      Cardoso CL, Curra C, Santos PL, Rodrigues MFM, Ferreira‐Júnior O, de Carvalho PSP. Current considerations on bone substitutes in maxillary sinus lifting. Rev Clín Periodoncia Implantol Rehabil Oral. 2016;9(2):102‐107.
      Guarnieri R, Belleggia F, DeVillier P, Testarelli L. Histologic and histomorphometric analysis of bone regeneration with bovine grafting material after 24 months of healing. A case report. J Funct Biomater. 2018;9(3):48.
      Schlegel KA, Fichtner G, Schultze‐Mosgau S, Wiltfang J. Histologic findings in sinus augmentation with autogenous bone chips versus a bovine bone substitute. Int J Oral Maxillofac Implants. 2003;18(1):53‐58.
      Schmitt CM, Doering H, Schmidt T, Lutz R, Neukam FW, Schlegel KA. Histological results after maxillary sinus augmentation with Straumann® BoneCeramic, Bio‐Oss®, Puros®, and autologous bone. A randomized controlled clinical trial. Clin Oral Implants Res. 2013;24(5):576‐585.
      Berglundh T, Lindhe J. Healing around implants placed in bone defects treated with bio‐Oss. An experimental study in the dog. Clin Oral Implants Res. 1997;8(2):117‐124.
      Esposito M, Grusovin MG, Felice P, Karatzopoulos G, Worthington HV, Coulthard P. Interventions for replacing missing teeth: horizontal and vertical bone augmentation techniques for dental implant treatment. Cochrane Database Syst Rev. 2009;(4):CD003607.
      Guarnieri R, Belleggia F, Ippoliti S, et al. Clinical, radiographic, and histologic evaluation of maxillary sinus lift procedure using a highly purified Xenogenic graft (Laddec(®)). J Oral Maxillofac Res. 2016;7(1):e3.
      Pettinicchio M, Traini T, Murmura G, et al. Histologic and histomorphometric results of three bone graft substitutes after sinus augmentation in humans. Clin Oral Investig. 2012;16(1):45‐53.
      Kamolratanakul P, Mattheos N, Yodsanga S, Jansisyanont P. The impact of deproteinized bovine bone particle size on histological and clinical bone healing outcomes in the augmented sinus: a randomized controlled clinical trial. Clin Implant Dent Relat Res. 2022;24(3):361‐371.
      Skoglund A, Hising P, Young C. A clinical and histologic examination in humans of the osseous response to implanted natural bone mineral. Int J Oral Maxillofac Implants. 1997;12(2):194‐199.
      Dahlin C, Obrecht M, Dard M, Donos N. Bone tissue modelling and remodelling following guided bone regeneration in combination with biphasic calcium phosphate materials presenting different microporosity. Clin Oral Implants Res. 2015;26(7):814‐822.
      LeGeros RZ, Lin S, Rohanizadeh R, Mijares D, LeGeros JP. Biphasic calcium phosphate bioceramics: preparation, properties and applications. J Mater Sci Mater Med. 2003;14:201‐209.
      Artzi Z, Weinreb M, Givol N, et al. Biomaterial resorption rate and healing site morphology of inorganic bovine bone and beta‐tricalcium phosphate in the canine: a 24‐month longitudinal histologic study and morphometric analysis. Int J Oral Maxillofac Implants. 2004;19(3):357‐368.
      Ohe JY, Kim GT, Lee JW, Al Nawas B, Jung J, Kwon YD. Volume stability of hydroxyapatite and β‐tricalcium phosphate biphasic bone graft material in maxillary sinus floor elevation: a radiographic study using 3D cone beam computed tomography. Clin Oral Implants Res. 2016;27(3):348‐353.
      Pripatnanont P, Praserttham P, Suttapreyasri S, Leepong N, Monmaturapoj N. Bone regeneration potential of biphasic nanocalcium phosphate with high hydroxyapatite/tricalcium phosphate ratios in rabbit Calvarial defects. Int J Oral Maxillofac Implants. 2016;31(2):294‐303.
      Hung CL, Yang JC, Chang WJ, et al. In vivo graft performance of an improved bone substitute composed of poor crystalline hydroxyapatite based biphasic calcium phosphate. Dent Mater J. 2011;30(1):21‐28.
      Cordaro L, Bosshardt DD, Palattella P, Rao W, Serino G, Chiapasco M. Maxillary sinus grafting with bio‐Oss or Straumann bone ceramic: histomorphometric results from a randomized controlled multicenter clinical trial. Clin Oral Implants Res. 2008;19(8):796‐803.
      Kraus RD, Stricker A, Thoma DS, Jung RE. Sinus floor elevation with biphasic calcium phosphate or deproteinized bovine bone mineral: clinical and histomorphometric outcomes of a randomized controlled clinical trial. Int J Oral Maxillofac Implants. 2020;35(5):1005‐1012.
      Taschieri S, Corbella S, Weinstein R, Di Giancamillo A, Mortellaro C, Del Fabbro M. Maxillary sinus floor elevation using platelet‐rich plasma combined with either biphasic calcium phosphate or deproteinized bovine bone. J Craniofac Surg. 2016;27(3):702‐707.
      La Monaca G, Iezzi G, Cristalli MP, Pranno N, Sfasciotti GL, Vozza I. Comparative histological and histomorphometric results of six biomaterials used in two‐stage maxillary sinus augmentation model after 6‐month healing. Biomed Res Int. 2018;2018:9430989.
      Caubet J, Ramis JM, Ramos‐Murguialday M, Morey M, Monjo M. Gene expression and morphometric parameters of human bone biopsies after maxillary sinus floor elevation with autologous bone combined with Bio‐Oss® or BoneCeramic®. Clin Oral Implants Res. 2015;26(6):727‐735.
      Friedmann A, Dard M, Kleber BM, Bernimoulin JP, Bosshardt DD. Ridge augmentation and maxillary sinus grafting with a biphasic calcium phosphate: histologic and histomorphometric observations. Clin Oral Implants Res. 2009;20(7):708‐714.
      Suwanwela J, Puangchaipruk D, Wattanasirmkit K, Kamolratanakul P, Jansisyanont P. Maxillary sinus floor augmentation using xenograft: gene expression and histologic analysis. Int J Oral Maxillofac Implants. 2017;32(3):611‐616.
      Lindgren C, Mordenfeld A, Hallman M. A prospective 1‐year clinical and radiographic study of implants placed after maxillary sinus floor augmentation with synthetic biphasic calcium phosphate or deproteinized bovine bone. Clin Implant Dent Relat Res. 2012;14(1):41‐50.
      Oh JS, Seo YS, Lee GJ, You JS, Kim SG. A comparative study with biphasic calcium phosphate to deproteinized bovine bone in maxillary sinus augmentation: a prospective randomized and controlled clinical trial. Int J Oral Maxillofac Implants. 2019;34(1):233‐242.
      Iezzi G, Degidi M, Piattelli A, et al. Comparative histological results of different biomaterials used in sinus augmentation procedures: a human study at 6 months. Clin Oral Implants Res. 2012;23(12):1369‐1376.
      de Lange GL, Overman JR, Farré‐Guasch E, et al. A histomorphometric and micro‐computed tomography study of bone regeneration in the maxillary sinus comparing biphasic calcium phosphate and deproteinized cancellous bovine bone in a human split‐mouth model. Oral Surg Oral Med Oral Pathol Oral Radiol. 2014;117(1):8‐22.
      Mordenfeld A, Lindgren C, Hallman M. Sinus floor augmentation using Straumann® BoneCeramic™ and Bio‐Oss® in a split mouth design and later placement of implants: a 5‐year report from a longitudinal study. Clin Implant Dent Relat Res. 2016;18(5):926‐936.
      Tosta M, Cortes ARG, Corrêa L, Pinto Jr DS, Tumenas I, Katchburian E. Histologic and histomorphometric evaluation of a synthetic bone substitute for maxillary sinus grafting in humans. Clin Oral Implants Res. 2013;24(8):866‐870.
      Wagner W, Wiltfang J, Pistner H, et al. Bone formation with a biphasic calcium phosphate combined with fibrin sealant in maxillary sinus floor elevation for delayed dental implant. Clin Oral Implants Res. 2012;23(9):1112‐1117.
      Lim HC, Zhang ML, Lee JS, Jung UW, Choi SH. Effect of different hydroxyapatite: β‐tricalcium phosphate ratios on the osteoconductivity of biphasic calcium phosphate in the rabbit sinus model. Int Oral Maxillofac Implants. 2015;30:65‐72.
      Arunjaroensuk S, Thunyakitpisal P, Nampuksa K, Monmaturapoj N, Mattheos N, Pimkhaokham A. Stability of guided bone regeneration with two ratios of biphasic calcium phosphate at implant sites in the esthetic zone: a randomized controlled clinical trial. Clin Oral Implants Res. 2023;34(8):850‐862.
      Di Stefano DA, Gastaldi G, Vinci R, Cinci L, Pieri L, Gherlone E. Histomorphometric comparison of enzyme‐deantigenic equine bone and anorganic bovine bone in sinus augmentation: a randomized clinical trial with 3‐year follow‐up. Int J Oral Maxillofac Implants. 2015;30(5):1161‐1167.
      Castellano D, Sepulveda JM, García‐Escobar I, Rodriguez‐Antolín A, Sundlöv A, Cortes‐Funes H. The role of RANK‐ligand inhibition in cancer: the story of denosumab. Oncologist. 2011;16(2):136‐145.
      Hayman AR. Tartrate‐resistant acid phosphatase (TRAP) and the osteoclast/immune cell dichotomy. Autoimmunity. 2008;41(3):218‐223.
      Scarano A, Degidi M, Iezzi G, et al. Maxillary sinus augmentation with different biomaterials: a comparative histologic and histomorphometric study in man. Implant Dent. 2006;15(2):197‐207.
      Kitayama S, Wong LO, Ma L, et al. Regeneration of rabbit calvarial defects using biphasic calcium phosphate and a strontium hydroxyapatite‐containing collagen membrane. Clin Oral Implants Res. 2016;27(12):e206‐e214.
      Mangano C, Scarano A, Perrotti V, Iezzi G, Piattelli A. Maxillary sinus augmentation with a porous synthetic hydroxyapatite and bovine‐derived hydroxyapatite: a comparative clinical and histologic study. Int J Oral Maxillofac Implants. 2007;22(6):980‐986.
      Daculsi G, Laboux O, Malard O, Weiss P. Current state of the art of biphasic calcium phosphate bioceramics. J Mater Sci Mater med. 2003;14(3):195‐200.
      Albrektsson T, Johansson C. Osteoinduction, osteoconduction and osseointegration. Eur Spine J. 2001;10(Suppl 2):S96‐S101.
      Jensen SS, Bornstein MM, Dard M, Bosshardt DD, Buser D. Comparative study of biphasic calcium phosphates with different HA/TCP ratios in mandibular bone defects: a long‐term histomorphometric study in minipigs. J Biomed Mater Res B Appl Biomater. 2009;90(1):171‐181.
      Schopper C, Ziya‐Ghazvini F, Goriwoda W, et al. HA/TCP compounding of a porous CaP biomaterial improves bone formation and scaffold degradation—a long‐term histological study. J Biomed Mater Res B Appl Biomater. 2005;74(1):458‐467.
      Chissov VI, Sviridova IK, Sergeeva NS, et al. Study of in vivo biocompatibility and dynamics of replacement of rat shin defect with porous granulated bioceramic materials. Bull Exp Biol Med. 2008;146(1):139‐143.
      Bouler JM, Pilet P, Gauthier O, Verron E. Biphasic calcium phosphate ceramics for bone reconstruction: a review of biological response. Acta Biomater. 2017;53:1‐12.
      Yip I, Ma L, Mattheos N, Dard M, Lang NP. Defect healing with various bone substitutes. Clin Oral Implants Res. 2015;26(5):606‐614.
      Barros RR, Degidi M, Novaes AB, Piattelli A, Shibli JA, Iezzi G. Osteocyte density in the peri‐implant bone of immediately loaded and submerged dental implants. J Periodontol. 2009;80(3):499‐504.
      Shibli JA, Grassi S, Piattelli A, et al. Histomorphometric evaluation of bioceramic molecular impregnated and dual acid‐etched implant surfaces in the human posterior maxilla. Clin Implant Dent Relat Res. 2010;12(4):281‐288.
      Shah FA, Thomsen P, Palmquist A. A review of the impact of implant biomaterials on osteocytes. J Dent Res. 2018;97(9):977‐986.
      Chambrone L, Rincón‐Castro MV, Poveda‐Marín AE, et al. Histological healing outcomes at the bone‐titanium interface of loaded and unloaded dental implants placed in humans: a systematic review of controlled clinical trials. Int J Oral Implantol (Berl). 2020;13(4):321‐342.
      de Calais CD, Bordin D, Piattelli A, Iezzi G, Negretto A, Shibli JA. Lateral static overload on immediately restored implants decreases the osteocyte index in peri‐implant bone: a secondary analysis of a pre‐clinical study in dogs. Clin Oral Investig. 2021;25(5):3297‐3303.
      Miron RJ, Sculean A, Shuang Y, et al. Osteoinductive potential of a novel biphasic calcium phosphate bone graft in comparison with autographs, xenografts, and DFDBA. Clin Oral Implants Res. 2016;27(6):668‐675.
      Jiang X‐Q, Sun X‐J, Lai H‐C, Zhao J, Wang S‐Y, Zhang Z‐Y. Maxillary sinus floor elevation using a tissue‐engineered bone complex with β‐TCP and BMP‐2 gene‐modified bMSCs in rabbits. Clin Oral Implants Res. 2009;20(12):1333‐1340.
      Crespi R, Mariani E, Benasciutti E, Capparè P, Cenci S, Gherlone E. Magnesium‐enriched hydroxyapatite versus autologous bone in maxillary sinus grafting: combining histomorphometry with osteoblast gene expression profiles ex vivo. J Periodontol. 2009;80(4):586‐593.
      Schwartz Z, Weesner T, van Dijk S, et al. Ability of deproteinized cancellous bovine bone to induce new bone formation. J Periodontol. 2000;71(8):1258‐1269.
      Turhani D, Watzinger E, Weissenböck M, et al. Three‐dimensional composites manufactured with human mesenchymal cambial layer precursor cells as an alternative for sinus floor augmentation: an in vitro study. Clin Oral Implants Res. 2005;16(4):417‐424.
      Kungvarnchaikul I, Subbalekha K, Sindhavajiva PR, Suwanwela J. Deproteinized bovine bone and freeze‐dried bone allograft in sinus floor augmentation: a randomized controlled trial. Clin Implant Dent Relat Res. 2023;25(2):343‐351.
      Toledano‐Serrabona J, Romeu IFA, Gay‐Escoda C, Camps‐Font O, Sánchez‐Garcés M. Clinical and histological outcomes of maxillary sinus floor augmentation with synthetic bone substitutes for dental implant treatment: a meta‐analysis. J Oral Implantol. 2022;48(2):158‐167.
      Javed A, Chen H, Ghori FY. Genetic and transcriptional control of bone formation. Oral Maxillofac Surg Clin North Am. 2010;22(3):283‐293.
      Galindo‐Moreno P, Moreno‐Riestra I, Avila G, et al. Effect of anorganic bovine bone to autogenous cortical bone ratio upon bone remodeling patterns following maxillary sinus augmentation. Clin Oral Implants Res. 2011;22(8):857‐864.
      Jungner M, Cricchio G, Salata LA, et al. On the early mechanisms of bone formation after maxillary sinus membrane elevation: an experimental histological and immunohistochemical study. Clin Implant Dent Relat Res. 2015;17(6):1092‐1102.
      Lin X, Patil S, Gao YG, Qian A. The bone extracellular matrix in bone formation and regeneration. Front Pharmacol. 2020;11:757.
      Jafary F, Hanachi P, Gorjipour K. Osteoblast differentiation on collagen scaffold with immobilized alkaline phosphatase. Int J Organ Transplant Med. 2017;8(4):195‐202.
      Mangano C, Bartolucci EG, Mazzocco C. A new porous hydroxyapatite for promotion of bone regeneration in maxillary sinus augmentation: clinical and histologic study in humans. Int J Oral Maxillofac Implants. 2003;18(1):23‐30.
      Galindo‐Moreno P, Hernández‐Cortés P, Padial‐Molina M, Vizoso M‐L, Crespo‐Lora V, O'Valle‐Ravassa F. Immunohistochemical osteopontin expression in bone xenograft in clinical series of maxillary sinus lift. J Oral Sci Rehabil. 2015;1:42‐50.
      Luukkonen J, Hilli M, Nakamura M, et al. Osteoclasts secrete osteopontin into resorption lacunae during bone resorption. Histochem Cell Biol. 2019;151(6):475‐487.
      Si J, Wang C, Zhang D, Wang B, Zhou Y. Osteopontin in bone metabolism and bone diseases. Med Sci Monit. 2020;26:e919159.
      Singh A, Gill G, Kaur H, Amhmed M, Jakhu H. Role of osteopontin in bone remodeling and orthodontic tooth movement: a review. Prog Orthod. 2018;19(1):18.
      Weber GF, Zawaideh S, Hikita S, Kumar VA, Cantor H, Ashkar S. Phosphorylation‐dependent interaction of osteopontin with its receptors regulates macrophage migration and activation. J Leukoc Biol. 2002;72(4):752‐761.
      Jiang J, Li H, Fahid FS, et al. Quantitative analysis of osteoclast‐specific gene markers stimulated by lipopolysaccharide. J Endod. 2006;32(8):742‐746.
      Andersson G, Ek‐Rylander B, Hollberg K, et al. TRACP as an osteopontin phosphatase. J Bone Miner Res. 2003;18(10):1912‐1915.
      Kirstein B, Chambers TJ, Fuller K. Secretion of tartrate‐resistant acid phosphatase by osteoclasts correlates with resorptive behavior. J Cell Biochem. 2006;98(5):1085‐1094.
      Ek‐Rylander B, Flores M, Wendel M, Heinegård D, Andersson G. Dephosphorylation of osteopontin and bone sialoprotein by osteoclastic tartrate‐resistant acid phosphatase. Modulation of osteoclast adhesion in vitro. J Biol Chem. 1994;269(21):14853‐14856.
      Ek‐Rylander B, Andersson G. Osteoclast migration on phosphorylated osteopontin is regulated by endogenous tartrate‐resistant acid phosphatase. Exp Cell Res. 2010;316(3):443‐451.
    • Grant Information:
      the 90th Anniversary of Chulalongkorn University Fund; the Second Century Fund (C2F), Chulalongkorn University
    • Contributed Indexing:
      Keywords: biphasic calcium phosphate; bone augmentation; gene expression; histological analysis; sinus floor elevation
    • Accession Number:
      0 (hydroxyapatite-beta tricalcium phosphate)
      0 (Bone Substitutes)
      TRS31EO6ZN (bone meal)
      0 (Minerals)
      0 (Biological Products)
      0 (Hydroxyapatites)
    • Publication Date:
      Date Created: 20240206 Date Completed: 20240409 Latest Revision: 20240409
    • Publication Date:
      20240409
    • Accession Number:
      10.1111/cid.13303
    • Accession Number:
      38317374