Menu
×
West Ashley Library
9 a.m. – 7 p.m.
Phone: (843) 766-6635
Wando Mount Pleasant Library
9 a.m. – 8 p.m.
Phone: (843) 805-6888
Village Library
9 a.m. – 6 p.m.
Phone: (843) 884-9741
St. Paul's/Hollywood Library
9 a.m. – 8 p.m.
Phone: (843) 889-3300
Otranto Road Library
9 a.m. – 8 p.m.
Phone: (843) 572-4094
Mt. Pleasant Library
9 a.m. – 8 p.m.
Phone: (843) 849-6161
McClellanville Library
9 a.m. – 6 p.m.
Phone: (843) 887-3699
Keith Summey North Charleston Library
9 a.m. – 8 p.m.
Phone: (843) 744-2489
John's Island Library
9 a.m. – 8 p.m.
Phone: (843) 559-1945
Hurd/St. Andrews Library
9 a.m. – 8 p.m.
Phone: (843) 766-2546
Folly Beach Library
Closed
Phone: (843) 588-2001
Edisto Island Library
9 a.m. – 6 p.m.
Phone: (843) 869-2355
Dorchester Road Library
9 a.m. – 8 p.m.
Phone: (843) 552-6466
John L. Dart Library
9 a.m. – 7 p.m.
Phone: (843) 722-7550
Baxter-Patrick James Island
9 a.m. – 8 p.m.
Phone: (843) 795-6679
Main Library
9 a.m. – 8 p.m.
Phone: (843) 805-6930
Bees Ferry West Ashley Library
9 a.m. – 8 p.m.
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
9 a.m. - 5 p.m.
Phone: (843) 805-6909
Today's Hours
West Ashley Library
9 a.m. – 7 p.m.
Phone: (843) 766-6635
Wando Mount Pleasant Library
9 a.m. – 8 p.m.
Phone: (843) 805-6888
Village Library
9 a.m. – 6 p.m.
Phone: (843) 884-9741
St. Paul's/Hollywood Library
9 a.m. – 8 p.m.
Phone: (843) 889-3300
Otranto Road Library
9 a.m. – 8 p.m.
Phone: (843) 572-4094
Mt. Pleasant Library
9 a.m. – 8 p.m.
Phone: (843) 849-6161
McClellanville Library
9 a.m. – 6 p.m.
Phone: (843) 887-3699
Keith Summey North Charleston Library
9 a.m. – 8 p.m.
Phone: (843) 744-2489
John's Island Library
9 a.m. – 8 p.m.
Phone: (843) 559-1945
Hurd/St. Andrews Library
9 a.m. – 8 p.m.
Phone: (843) 766-2546
Folly Beach Library
Closed
Phone: (843) 588-2001
Edisto Island Library
9 a.m. – 6 p.m.
Phone: (843) 869-2355
Dorchester Road Library
9 a.m. – 8 p.m.
Phone: (843) 552-6466
John L. Dart Library
9 a.m. – 7 p.m.
Phone: (843) 722-7550
Baxter-Patrick James Island
9 a.m. – 8 p.m.
Phone: (843) 795-6679
Main Library
9 a.m. – 8 p.m.
Phone: (843) 805-6930
Bees Ferry West Ashley Library
9 a.m. – 8 p.m.
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
9 a.m. - 5 p.m.
Phone: (843) 805-6909
Patron Login
menu
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Fertilizer management for global ammonia emission reduction.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Author(s): Xu P;Xu P;Xu P; Li G; Li G; Li G; Zheng Y; Zheng Y; Zheng Y; Zheng Y; Fung JCH; Fung JCH; Fung JCH; Chen A; Chen A; Zeng Z; Zeng Z; Shen H; Shen H; Hu M; Hu M; Mao J; Mao J; Zheng Y; Zheng Y; Cui X; Cui X; Guo Z; Guo Z; Chen Y; Chen Y; Feng L; Feng L; He S; He S; Zhang X; Zhang X; Lau AKH; Lau AKH; Lau AKH; Tao S; Tao S; Tao S; Houlton BZ; Houlton BZ
- Source:
Nature [Nature] 2024 Feb; Vol. 626 (8000), pp. 792-798. Date of Electronic Publication: 2024 Jan 31.- Publication Type:
Journal Article- Language:
English - Source:
- Additional Information
- Source: Publisher: Nature Publishing Group Country of Publication: England NLM ID: 0410462 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1476-4687 (Electronic) Linking ISSN: 00280836 NLM ISO Abbreviation: Nature Subsets: MEDLINE
- Publication Information: Publication: Basingstoke : Nature Publishing Group
Original Publication: London, Macmillan Journals ltd. - Subject Terms: Ammonia*/analysis ; Ammonia*/metabolism ; Crop Production*/methods ; Crop Production*/statistics & numerical data ; Crop Production*/trends ; Fertilizers*/adverse effects ; Fertilizers*/analysis ; Fertilizers*/statistics & numerical data; Datasets as Topic ; Ecosystem ; Machine Learning ; Nitrogen/analysis ; Nitrogen/metabolism ; Oryza/metabolism ; Soil/chemistry ; Triticum/metabolism ; Zea mays/metabolism ; Climate Change/statistics & numerical data
- Abstract: Crop production is a large source of atmospheric ammonia (NH
3 ), which poses risks to air quality, human health and ecosystems 1-5 . However, estimating global NH3 emissions from croplands is subject to uncertainties because of data limitations, thereby limiting the accurate identification of mitigation options and efficacy 4,5 . Here we develop a machine learning model for generating crop-specific and spatially explicit NH3 emission factors globally (5-arcmin resolution) based on a compiled dataset of field observations. We show that global NH3 emissions from rice, wheat and maize fields in 2018 were 4.3 ± 1.0 Tg N yr -1 , lower than previous estimates that did not fully consider fertilizer management practices 6-9 . Furthermore, spatially optimizing fertilizer management, as guided by the machine learning model, has the potential to reduce the NH3 emissions by about 38% (1.6 ± 0.4 Tg N yr -1 ) without altering total fertilizer nitrogen inputs. Specifically, we estimate potential NH3 emissions reductions of 47% (44-56%) for rice, 27% (24-28%) for maize and 26% (20-28%) for wheat cultivation, respectively. Under future climate change scenarios, we estimate that NH3 emissions could increase by 4.0 ± 2.7% under SSP1-2.6 and 5.5 ± 5.7% under SSP5-8.5 by 2030-2060. However, targeted fertilizer management has the potential to mitigate these increases.
(© 2024. The Author(s), under exclusive licence to Springer Nature Limited.) - References: Galloway, J. N. et al. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320, 889–892 (2008). (PMID: 1848718310.1126/science.1136674)
Höpfner, M. et al. Ammonium nitrate particles formed in upper troposphere from ground ammonia sources during Asian monsoons. Nat. Geosci. 12, 608–612 (2019). (PMID: 10.1038/s41561-019-0385-8)
Liu, L. et al. Exploring global changes in agricultural ammonia emissions and their contribution to nitrogen deposition since 1980. Proc. Natl Acad. Sci. USA 119, e2121998119 (2022). (PMID: 35344440916910110.1073/pnas.2121998119)
Bodirsky, B. L. et al. Reactive nitrogen requirements to feed the world in 2050 and potential to mitigate nitrogen pollution. Nat. Commun. 5, 3858 (2014). (PMID: 2481988910.1038/ncomms4858)
Gu, B. J. et al. Abating ammonia is more cost-effective than nitrogen oxides for mitigating PM2.5 air pollution. Science 374, 758–762 (2021). (PMID: 3473524410.1126/science.abf8623)
Yang, Y. Y. et al. Improved global agricultural crop- and animal-specific ammonia emissions during 1961–2018. Agr. Ecosy. Environ. 344, 108289 (2023). (PMID: 10.1016/j.agee.2022.108289)
Xu, R. T. et al. Global ammonia emissions from synthetic nitrogen fertilizer applications in agricultural systems: empirical and process-based estimates and uncertainty. Glob. Change Biol. 25, 314–326 (2019). (PMID: 10.1111/gcb.14499)
Ma, R. Y. et al. Global soil-derived ammonia emissions from agricultural nitrogen fertilizer application: a refinement based on regional and crop-specific emission factors. Glob. Change Biol. 27, 855–867 (2021). (PMID: 10.1111/gcb.15437)
Zhan, X. Y. et al. Improved estimates of ammonia emissions from global croplands. Environ. Sci. Technol. 55, 1329–1338 (2021). (PMID: 3337862110.1021/acs.est.0c05149)
Ferrario, M. et al. EDGAR v.6.1. Global Air Pollutant Emissions. European Commission, Joint Research Centre (JRC) http://data.europa.eu/89h/df521e05-6a3b-461c-965a-b703fb62313e (2022).
Ladha, J. K. et al. Achieving the sustainable development goals in agriculture: the crucial role of nitrogen in cereal-based systems. Adv. Agron. 163, 39–116 (2020). (PMID: 10.1016/bs.agron.2020.05.006)
Fesenfeld, L. P., Schmidt, T. S. & Schrode, A. Climate policy for short- and long-lived pollutants. Nat. Clim. Change 8, 934–936 (2018). (PMID: 10.1038/s41558-018-0328-1)
Schulte-Uebbing, L. F., Beusen, A. H. W., Bouwman, A. F. & de Vries, W. From planetary to regional boundaries for agricultural nitrogen pollution. Nature 610, 507–512 (2022). (PMID: 3626155010.1038/s41586-022-05158-2)
Crippa, M. et al. Gridded emissions of air pollutants for the period 1970-2012 within EDGAR v4.3.2. Earth Syst. Sci. Data 10, 1987–2013 (2018). (PMID: 10.5194/essd-10-1987-2018)
Luo, Z. et al. Estimating global ammonia (NH3 ) emissions based on IASI observations from 2008 to 2018. Atmos. Chem. Phys. 22, 10375–10388 (2022). (PMID: 10.5194/acp-22-10375-2022)
Van Damme, M. et al. Industrial and agricultural ammonia point sources exposed. Nature 564, 99–103 (2018). (PMID: 3051888810.1038/s41586-018-0747-1)
Aneja, V. P., Schlesinger, W. H., Li, Q., Nahas, A. & Battye, W. H. Characterization of the global sources of atmospheric ammonia from agricultural soils. J. Geophys. Res-Atmos. 125, e2019JD031684 (2020). (PMID: 10.1029/2019JD031684)
Ma, R. et al. Mitigation potential of global ammonia emissions and related health impacts in the trade network. Nat. Commun. 12, 6308 (2021). (PMID: 34741029857134610.1038/s41467-021-25854-3)
Zhang, C. et al. Using nitrification inhibitors and deep placement to tackle the trade-offs between NH3 and N2 O emissions in global croplands. Glob. Change Biol. 28, 4409–4422 (2022). (PMID: 10.1111/gcb.16198)
Sha, Z. P. et al. Improved soil-crop system management aids in NH3 emission mitigation in China. Environ. Pollut. 289, 117844 (2021). (PMID: 3434018410.1016/j.envpol.2021.117844)
Ti, C., Xia, L., Chang, S. X. & Yan, X. Y. Potential for mitigating global agricultural ammonia emission: a meta-analysis. Environ. Pollut. 245, 141–148 (2019). (PMID: 3041503310.1016/j.envpol.2018.10.124)
Gu, B. et al. Cost-effective mitigation of nitrogen pollution from global croplands. Nature 613, 77–84 (2023). (PMID: 36600068984250210.1038/s41586-022-05481-8)
Xia, L. L. & Yan, X. Y. How to feed the world while reducing nitrogen pollution. Nature 613, 34–35 (2023). (PMID: 3660005910.1038/d41586-022-04490-x)
Shahzad, A. N., Qureshi, M. K., Wakeel, A. & Misselbrook, T. Crop production in Pakistan and low nitrogen use efficiencies. Nat. Sustain. 2, 1106–1114 (2019). (PMID: 10.1038/s41893-019-0429-5)
Zhang, X. et al. Managing nitrogen for sustainable development. Nature 528, 51–59 (2015). (PMID: 2659527310.1038/nature15743)
Xu, P. et al. Role of organic and conservation agriculture in ammonia emissions and crop productivity in China. Environ. Sci. Technol. 56, 2977–2989 (2022). (PMID: 3514742110.1021/acs.est.1c07518)
Xu, P. et al. Northward shift of historical methane emission hotspots from the livestock sector in China and assessment of potential mitigation options. Agric. For. Meteorol. 272-273, 1–11 (2019). (PMID: 10.1016/j.agrformet.2019.03.022)
Li, T. et al. Enhanced-efficiency fertilizers are not a panacea for resolving the nitrogen problem. Glob. Change Biol. 24, e511–e521 (2018). (PMID: 10.1111/gcb.13918)
Lam, S. K. et al. Next-generation enhanced-efficiency fertilizers for sustained food security. Nat. Food 3, 575–580 (2022). (PMID: 3711858710.1038/s43016-022-00542-7)
Kanter, D. R. & Searchinger, T. D. A technology-forcing approach to reduce nitrogen pollution. Nat. Sustain. 1, 544–552 (2018). (PMID: 10.1038/s41893-018-0143-8)
Timilsena, Y. P. et al. Enhanced efficiency fertilisers: a review of formulation and nutrient release patterns. J. Sci. Food. Agr. 95, 1131–1142 (2015). (PMID: 10.1002/jsfa.6812)
Duan, J. K. et al. Consolidation of agricultural land can contribute to agricultural sustainability in China. Nat. Food 2, 1014–1022 (2021). (PMID: 3711825710.1038/s43016-021-00415-5)
Springmann, M. et al. Options for keeping the food system within environmental limits. Nature 562, 519–525 (2018). (PMID: 3030573110.1038/s41586-018-0594-0)
Cai, S. et al. Optimal nitrogen rate strategy for sustainable rice production in China. Nature 615, 73–79 (2023). (PMID: 3681395910.1038/s41586-022-05678-x)
Xu, P. et al. Policy-enabled stabilization of nitrous oxide emissions from livestock production in China over 1978-2017. Nat. Food 3, 356–366 (2022). (PMID: 3711757210.1038/s43016-022-00513-y)
Xia, L. L., Lam, S. K., Yan, X. & Chen, D. How does recycling of livestock manure in agroecosystems affect crop productivity, reactive nitrogen losses, and soil carbon balance?. Environ. Sci. Technol. 51, 7450–7457 (2017). (PMID: 2857470410.1021/acs.est.6b06470)
Uwizeye, A. et al. Nitrogen emissions along global livestock supply chains. Nat. Food 1, 437–446 (2020). (PMID: 10.1038/s43016-020-0113-y)
Erickson, E. D. et al. Biogas production in United States dairy farms incentivized by electricity policy changes. Nat. Sustain. 6, 438–446 (2023). (PMID: 10.1038/s41893-022-01038-9)
Wu, Y. Y. et al. Policy distortions, farm size, and the overuse of agricultural chemicals in China. Proc. Natl Acad. Sci. USA 115, 7010–7015 (2018). (PMID: 29915067614225110.1073/pnas.1806645115)
Zou, T., Zhang, X. & Davidson, E. A. Global trends of cropland phosphorus use and sustainability challenges. Nature 611, 81–87 (2022). (PMID: 3622439110.1038/s41586-022-05220-z)
Ren, C. C., Zhang, X. M., Reis, S. & Gu, B. J. Socioeconomic barriers of nitrogen management for agricultural and environmental sustainability. Agr. Ecosyst. Environ. 333, 107950 (2022). (PMID: 10.1016/j.agee.2022.107950)
Vitousek, P. M. et al. Nutrient imbalances in agricultural development. Science 324, 1519–1520 (2009). (PMID: 1954198110.1126/science.1170261)
Wang, C. et al. Ammonia emissions from croplands decrease with farm size in China. Environ. Sci. Technol. 56, 9915–9923 (2022). (PMID: 3562126210.1021/acs.est.2c01061)
Wu, K. et al. Enhanced sustainable green revolution yield via nitrogen-responsive chromatin modulation in rice. Science 367, eaaz2046 (2020). (PMID: 3202960010.1126/science.aaz2046)
Hoesly, R. M. et al. Historical (1750-2014) anthropogenic emissions of reactive gases and aerosols from the Community Emissions Data System (CEDS). Geosci. Model Dev. 11, 369–408 (2018). (PMID: 10.5194/gmd-11-369-2018)
Chen, Z.-L. et al. Significant contributions of combustion-related sources to ammonia emissions. Nat. Commun. 13, 7710 (2022). (PMID: 36513669974778810.1038/s41467-022-35381-4)
Guardia, G. et al. Increasing N use efficiency while decreasing gaseous N losses in a non-tilled wheat (Triticum aestivum L.) crop using a double inhibitor. Agr. Ecosyst. Environ. 319, 107546 (2021). (PMID: 10.1016/j.agee.2021.107546)
Recio, J. et al. Joint mitigation of NH3 and N2 O emissions by using two synthetic inhibitors in an irrigated cropping soil. Geoderma 373, 114423 (2020). (PMID: 10.1016/j.geoderma.2020.114423)
Yu, F., Wei, C., Deng, P., Peng, T. & Hu, X. Deep exploration of random forest model boosts the interpretability of machine learning studies of complicated immune responses and lung burden of nanoparticles. Sci. Adv. 7, eabf4130 (2021). (PMID: 34039604815372710.1126/sciadv.abf4130)
Grubbs, F. E. Procedures for detecting outlying observations in samples. Technometrics 11, 1–21 (1969). (PMID: 10.1080/00401706.1969.10490657)
Box, G. E. P. & Cox, D. R. An analysis of transformations. J. R. Stat. Soc. B. 26, 211–252 (1964).
Cook-Patton, S. C. et al. Mapping carbon accumulation potential from global natural forest regrowth. Nature 585, 545–550 (2020). (PMID: 3296825810.1038/s41586-020-2686-x)
Biau, G. & Scornet, E. A random forest guided tour. Test 25, 197–227 (2016). (PMID: 10.1007/s11749-016-0481-7)
Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001). (PMID: 10.1023/A:1010933404324)
Ishwaran, H., Kogalur, U. B., Gorodeski, E. Z., Minn, A. J. & Lauer, M. S. High-dimensional variable selection for survival data. J. Am. Stat. Assoc. 105, 205–217 (2010). (PMID: 10.1198/jasa.2009.tm08622)
Zhang, K., Li, X., Zheng, D. H., Zhang, L. & Zhu, G. F. Estimation of global irrigation water use by the integration of multiple satellite observations. Water Resour. Res. 58, e2021WR030031 (2022). (PMID: 10.1029/2021WR030031)
Ray, D. K., Ramankutty, N., Mueller, N. D., West, P. C. & Foley, J. A. Recent patterns of crop yield growth and stagnation. Nat. Commun. 3, 1293 (2012). (PMID: 2325042310.1038/ncomms2296)
Sacks, W. J., Deryng, D., Foley, J. A. & Ramankutty, N. Crop planting dates: an analysis of global patterns. Global Ecol. Biogeogr. 19, 607–620 (2010). (PMID: 10.1111/j.1466-8238.2010.00551.x)
Tian, H. Q. et al. History of anthropogenic Nitrogen inputs (HaNi) to the terrestrial biosphere: a 5 arcmin resolution annual dataset from 1860 to 2019. Earth Syst. Sci. Data 14, 4551–4568 (2022). (PMID: 10.5194/essd-14-4551-2022)
Mueller, N. D. et al. Closing yield gaps through nutrient and water management. Nature 490, 254–257 (2012). (PMID: 2293227010.1038/nature11420)
West, P. C. et al. Leverage points for improving global food security and the environment. Science 345, 325–328 (2014). (PMID: 2503549210.1126/science.1246067)
Cui, X. Q. et al. Global mapping of crop-specific emission factors highlights hotspots of nitrous oxide mitigation. Nat. Food 2, 886–893 (2021). (PMID: 3711750110.1038/s43016-021-00384-9)
van den Hoogen, J. et al. Soil nematode abundance and functional group composition at a global scale. Nature 572, 194–198 (2019). (PMID: 3134128110.1038/s41586-019-1418-6)
Food and Agriculture Organization of the United Nations (FAO). FAOSTAT: FAO Statistical Databases (FAO, 2022); https://www.fao.org/food-agriculture-statistics/en/ .
IPCC. Climate Change 2022: Impacts, Adaptation and Vulnerability (eds Pörtner, H. O. et al.) (Cambridge Univ. Press, 2022).
O’Neill, B. C. et al. The scenario model intercomparison project (ScenarioMIP) for CMIP6. Geosci. Model Dev. 9, 3461–3482 (2016). (PMID: 10.5194/gmd-9-3461-2016)
Zhu, P. et al. Warming reduces global agricultural production by decreasing cropping frequency and yields. Nat. Clim. Change 12, 1016–1023 (2022). (PMID: 10.1038/s41558-022-01492-5)
Lange, S. Trend-preserving bias adjustment and statistical downscaling with ISIMIP3BASD (v1.0). Geosci. Model Dev. 12, 3055–3070 (2019). (PMID: 10.5194/gmd-12-3055-2019) - Accession Number: 7664-41-7 (Ammonia)
0 (Fertilizers)
N762921K75 (Nitrogen)
0 (Soil) - Publication Date: Date Created: 20240131 Date Completed: 20240223 Latest Revision: 20240226
- Publication Date: 20240227
- Accession Number: 10.1038/s41586-024-07020-z
- Accession Number: 38297125
- Source:
Contact CCPL
Copyright 2022 Charleston County Public Library Powered By EBSCO Stacks 3.3.0 [350.3] | Staff Login
No Comments.