Combination of Gold Nanoparticles with Carnitine Attenuates Brain Damage in an Obesity Animal Model.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Humana Press Country of Publication: United States NLM ID: 8900963 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1559-1182 (Electronic) Linking ISSN: 08937648 NLM ISO Abbreviation: Mol Neurobiol Subsets: MEDLINE
    • Publication Information:
      Original Publication: Clifton, NJ : Humana Press, c1987-
    • Subject Terms:
    • Abstract:
      Obesity causes inflammation in the adipose tissue and can affect the central nervous system, leading to oxidative stress and mitochondrial dysfunction. Therefore, it becomes necessary to seek new therapeutic alternatives. Gold nanoparticles (GNPs) could take carnitine to the adipose tissue, thus increasing fatty acid oxidation, reducing inflammation, and, consequently, restoring brain homeostasis. The objective of this study was to investigate the effects of GNPs associated with carnitine on the neurochemical parameters of obesity-induced mice. Eighty male Swiss mice that received a normal lipid diet (control group) or a high-fat diet (obese group) for 10 weeks were used. At the end of the sixth week, the groups were divided for daily treatment with saline, GNPs (70 µg/kg), carnitine (500 mg/kg), or GNPs associated with carnitine, respectively. Body weight was monitored weekly. At the end of the tenth week, the animals were euthanized and the mesenteric fat removed and weighed; the brain structures were separated for biochemical analysis. It was found that obesity caused oxidative damage and mitochondrial dysfunction in brain structures. Treatment with GNPs isolated reduced oxidative stress in the hippocampus. Carnitine isolated decreased the accumulation of mesenteric fat and oxidative stress in the hippocampus. The combination of treatments reduced the accumulation of mesenteric fat and mitochondrial dysfunction in the striatum. Therefore, these treatments in isolation, become a promising option for the treatment of obesity.
      (© 2024. The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature.)
    • References:
      Bergman RN, Kim SP, Hsu IR, Catalano KJ, Chiu JD, Kabir M, Richey JM, Ader M (2007) Abdominal obesity: role in the pathophysiology of metabolic disease and cardiovascular risk. Am J Med 120:S3–S8. https://doi.org/10.1016/j.amjmed.2006.11.012. (PMID: 17296343)
      World Health Organization (2016). Obesity and overweight—fact https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight . Accessed 15 Nov 2022.
      Aaseth J, Ellefsen S, Alehagen U, Sundfør TM, Alexander J (2021) Diets and drugs for weight loss and health in obesity – an update. Biomed Pharmacother 140:111789. https://doi.org/10.1016/j.biopha.2021.111789. (PMID: 34082399)
      Horwitz A, Birk R (2023) Adipose tissue hyperplasia and hypertrophy in common and syndromic obesity—the case of BBS obesity. Nutrients 15:3445. https://doi.org/10.3390/NU15153445. (PMID: 3757138210421039)
      Hammarstedt A, Gogg S, Hedjazifar S, Nerstedt A, Smith U (2018) Impaired adipogenesis and dysfunctional adipose tissue in human hypertrophic obesity. Physiol Rev 98:1911–1941. https://doi.org/10.1152/PHYSREV.00034.2017. (PMID: 30067159)
      Wang QA, Tao C, Gupta RK, Scherer PE (2013) Tracking adipogenesis during white adipose tissue development, expansion and regeneration. Nat Med 19:1338. https://doi.org/10.1038/NM.3324. (PMID: 239952824075943)
      Michailidou Z (2019) Fundamental roles for hypoxia signalling in adipose tissue metabolism and inflammation in obesity. Curr Opin Physiol 12:39–43. https://doi.org/10.1016/j.cophys.2019.09.005.
      Russo L, Lumeng CN (2018) Properties and functions of adipose tissue macrophages in obesity. Immunology 155:407–417. https://doi.org/10.1111/IMM.13002. (PMID: 302298916230999)
      Fujisaka S, Usui I, Ikutani M, Aminuddin A, Takikawa A, Tsuneyama K, Mahmood A, Goda N, Nagai Y, Takatsu K, Tobe K (2013) Adipose tissue hypoxia induces inflammatory M1 polarity of macrophages in an HIF-1α-dependent and HIF-1α-independent manner in obese mice. Diabetologia 56:1403–1412. https://doi.org/10.1007/s00125-013-2885-1. (PMID: 23494472)
      Gómez-Apo E, Mondragón-Maya A, Ferrari-Díaz M, Silva-Pereyra J (2021) Structural brain changes associated with overweight and obesity. J Obes 2021:6613385. https://doi.org/10.1155/2021/6613385. (PMID: 343270178302366)
      Van Dyken P, Lacoste B (2018) Impact of metabolic syndrome on neuroinflammation and the blood–brain barrier. Front Neurosci 12:930. https://doi.org/10.3389/fnins.2018.00930. (PMID: 306185596297847)
      O’Brien PD, Hinder LM, Callaghan BC, Feldman EL (2017) Neurological consequences of obesity. Lancet Neurol 16:465–477. https://doi.org/10.1016/S1474-4422(17)30084-4. (PMID: 285041105657398)
      Guillemot-Legris O, Muccioli GG (2017) Obesity-induced neuroinflammation: beyond the hypothalamus. Trends Neurosci 40:237–253. https://doi.org/10.1016/j.tins.2017.02.005. (PMID: 28318543)
      Marseglia L, Manti S, D’Angelo G, Nicotera A, Parisi E, Di Rosa G, Gitto E, Arrigo T (2014) Oxidative stress in obesity: a critical component in human diseases. Int J Mol Sci 16:378–400. https://doi.org/10.3390/ijms16010378. (PMID: 255488964307252)
      de Bona SR, de Mello AH, Garcez ML, de Bem SG, Zacaron RP, de Souza Goldim MP, Budni J, Silveira PCL, Petronilho F, Ferreira GK, Rezin GT (2019) Diet-induced obesity causes hypothalamic neurochemistry alterations in Swiss mice. Metab Brain Dis 34:565–573. https://doi.org/10.1007/s11011-018-0337-9.
      Mullins CA, Gannaban RB, Khan MS, Shah H, Siddik MAB, Hegde VK, Reddy PH, Shin AC (2020) Neural underpinnings of obesity: the role of oxidative stress and inflammation in the brain. Antioxidants 9:1018. https://doi.org/10.3390/antiox9101018. (PMID: 330920997589608)
      Wadden TA, Tronieri JS, Butryn ML (2020) Lifestyle modification approaches for the treatment of obesity in adults. Am Psychol 75:235–251. https://doi.org/10.1037/AMP0000517. (PMID: 320529977027681)
      Krentz AJ, Fujioka K, Hompesch M (2016) Evolution of pharmacological obesity treatments: focus on adverse side-effect profiles. Diabetes Obes Metab 18:558–570. https://doi.org/10.1111/DOM.12657. (PMID: 26936802)
      Patra JK, Das G, Fraceto LF, Campos EVR, Rodriguez-Torres MDP, Acosta-Torres LS, Diaz-Torres LA, Grillo R, Swamy MK, Sharma S, Habtemariam S, Shin HS (2018) Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnology 16:71. https://doi.org/10.1186/s12951-018-0392-8. (PMID: 302318776145203)
      Fujita T, Zysman M, Elgrabli D, Murayama T, Haruta M, Lanone S, Ishida T, Boczkowski J (2021) Anti-inflammatory effect of gold nanoparticles supported on metal oxides. Sci Rep 11:23129. https://doi.org/10.1038/s41598-021-02419-4. (PMID: 348487698632916)
      Prá M, Ferreira GK, de Mello AH, Uberti MF, Engel NA, Costa AB, Zepon KM, Francisco GG, Hlavac NRC, Terra SR, Garcez ML, Zaccaron RP, Mendes C, Tschoeke ACP, Kanis LA, Budni J, Silveira PCL, Petronilho F, da Silva Paula MM, Rezin GT (2021) Treatment with isolated gold nanoparticles reverses brain damage caused by obesity. Mater Sci Eng, C 120:111392. https://doi.org/10.1016/J.MSEC.2020.111392.
      Sharma VK, Prateeksha GSC, Singh BN, Rao CV, Barik SK (2022) Cinnamomum verum-derived bioactives-functionalized gold nanoparticles for prevention of obesity through gut microbiota reshaping. Mater Today Bio 13:100204. https://doi.org/10.1016/J.MTBIO.2022.100204. (PMID: 351464058818573)
      Gao L, Hu Y, Hu D, Li Y, Yang S, Dong X, Alharbi SA, Liu H (2020) Anti-obesity activity of gold nanoparticles synthesized from Salacia chinensis modulates the biochemical alterations in high-fat diet-induced obese rat model via AMPK signaling pathway. Arab J Chem 13:6589–6597. https://doi.org/10.1016/J.ARABJC.2020.06.015.
      Sela H, Cohen H, Elia P, Zach R, Karpas Z, Zeiri Y (2015) Spontaneous penetration of gold nanoparticles through the blood brain barrier (BBB). J Nanobiotechnology 13:1–9. https://doi.org/10.1186/S12951-015-0133-1/FIGURES/3.
      Abel J, Silva MRD, Costa AB, Oliveira MP, Silva LED, Dela Vedova LM, Mendes TF, Tartari G, Possato JC, Ferreira GK, Machado de Avila RA, Rezin GT (2023) Therapeutic effects of the gold nanoparticle on obesity-triggered neuroinflammation: a review. J Drug Target 31:134–141. https://doi.org/10.1080/1061186X.2022.2120613. (PMID: 36066550)
      Ghosh P, Han G, De M, Kim CK, Rotello VM (2008) Gold nanoparticles in delivery applications. Adv Drug Deliv Rev 60:1307–1315. https://doi.org/10.1016/J.ADDR.2008.03.016. (PMID: 18555555)
      Bremer J (1983) Carnitine–metabolism and functions. Physiol Rev 63:1420–1480. https://doi.org/10.1152/PHYSREV.1983.63.4.1420. (PMID: 6361812)
      Sawicka AK, Renzi G, Olek RA (2020) The bright and the dark sides of L-carnitine supplementation: a systematic review. J Int Soc Sports Nutr 17:49. https://doi.org/10.1186/S12970-020-00377-2. (PMID: 329580337507632)
      de Farias BX, Costa AB, Engel NA, de Souza Goldim MP, da Rosa TC, Cargnin-Cavalho A, Fortunato JJ, Petronilho F, Jeremias IC, Rezin GT (2020) Donepezil Prevents Inhibition of Cerebral Energetic Metabolism Without Altering Behavioral Parameters in Animal Model of Obesity. Neurochem Res 45:2487–2498. https://doi.org/10.1007/s11064-020-03107-x. (PMID: 32789797)
      Bauomy AA (2020) Zinc oxide nanoparticles and L-carnitine effects on neuro-schistosomiasis mansoni induced in mice. Environ Sci Pollut Res Int 27:18699–18707. https://doi.org/10.1007/S11356-020-08356-5. (PMID: 32207001)
      Chorilli M, Michelin DC, Salgado HRN (2007) Animais de laboratório: o camundongo. Rev Ciênc Farm Básica Apl 28:11–23.
      Cintra DE, Ropelle ER, Moraes JC, Pauli JR, Morari J, Souza CT, Grimaldi R, Stahl M, Carvalheira JB, Saad MJ, Velloso LA (2012) Unsaturated fatty acids revert diet-induced hypothalamic inflammation in obesity. PLoS ONE 7:e30571. https://doi.org/10.1371/journal.pone.0030571. (PMID: 222795963261210)
      Turkevich J, Stevenson PC, Hillier J (1951) A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss Faraday Soc 11:55–75. https://doi.org/10.1039/DF9511100055.
      LeBel CP, Ischiropoulos H, Bondy SC (1992) Evaluation of the probe 2’,7’-dichlorofluorescin as an indicator of reactive oxygen species formation and oxidative stress. Chem Res Toxicol 5:227–231. https://doi.org/10.1021/TX00026A012. (PMID: 1322737)
      Chae SY, Lee M, Kim SW, Bae YH (2004) Protection of insulin secreting cells from nitric oxide induced cellular damage by crosslinked hemoglobin. Biomaterials 25:843–850. https://doi.org/10.1016/S0142-9612(03)00605-7. (PMID: 14609673)
      Lowry OH, Rosebrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193:265–275. https://doi.org/10.1016/S0021-9258(19)52451-6. (PMID: 14907713)
      Levine RL, Williams JA, Stadtman EP, Shacter E (1994) Carbonyl assays for determination of oxidatively modified proteins. Methods Enzymol Methods Enzymol 233:346–357. https://doi.org/10.1016/s0076-6879(94)33040-9. (PMID: 8015469)
      Bannister JV, Calabrese L (2006) Assays for superoxide dismutase In: Methods of biochemical analysis. Methods Biochem Anal 32:279–312. https://doi.org/10.1002/9780470110539.ch5.
      Hissin PJ, Hilf R (1976) A fluorometric method for determination of oxidized and reduced glutathione in tissues. Anal Biochem 74:214–226. https://doi.org/10.1016/0003-2697(76)90326-2. (PMID: 962076)
      Fischer JC, Ruitenbeek W, Berden JA, Trijbels JM, Veerkamp JH, Stadhouders AM, Sengers RC, Janssen AJ (1985) Differential investigation of the capacity of succinate oxidation in human skeletal muscle. Clin Chim Acta 153:23–36. https://doi.org/10.1016/0009-8981(85)90135-4. (PMID: 3000647)
      Cassina A, Radi R (1996) Differential inhibitory action of nitric oxide and peroxynitrite on mitochondrial electron transport. Arch Biochem Biophys 328:309–316. https://doi.org/10.1006/ABBI.1996.0178. (PMID: 8645009)
      Rustin P, Chretien D, Bourgeron T, Gérard B, Rötig A, Saudubray JM, Munnich A (1994) Biochemical and molecular investigations in respiratory chain deficiencies. Clin Chim Acta 228:35–51. https://doi.org/10.1016/0009-8981(94)90055-8. (PMID: 7955428)
      Kleinert M, Clemmensen C, Hofmann SM, Moore MC, Renner S, Woods SC, Huypens P, Beckers J, de Angelis MH, Schürmann A, Bakhti M, Klingenspor M, Heiman M, Cherrington AD, Ristow M, Lickert H, Wolf E, Havel PJ, Müller TD, Tschöp MH (2018) Animal models of obesity and diabetes mellitus. Nat Rev Endocrinol 14:140–162. https://doi.org/10.1038/nrendo.2017.161. (PMID: 29348476)
      Chusyd DE, Wang D, Huffman DM, Nagy TR (2016) Relationships between rodent white adipose fat pads and human white adipose fat depots. Front Nutr 3:10. https://doi.org/10.3389/fnut.2016.00010. (PMID: 271485354835715)
      de Mello AH, Schraiber RB, Goldim MPS, Garcez ML, Gomes ML, de Bem SG, Zaccaron RP, Schuck PF, Budni J, Silveira PCL, Petronilho F, Rezin GT (2019) Omega-3 fatty acids attenuate brain alterations in high-fat diet-induced obesity model. Mol Neurobiol 56:513–524. https://doi.org/10.1007/S12035-018-1097-6. (PMID: 29728888)
      Halpern B, Mancini MC, de Melo ME, Lamounier RN, Moreira RO, Carra MK, Kyle TK, Cercato C, Boguszewski CL (2022) Proposal of an obesity classification based on weight history: an official document by the Brazilian Society of Endocrinology and Metabolism (SBEM) and the Brazilian Society for the Study of Obesity and Metabolic Syndrome (ABESO). Arch Endocrinol Metab 66:139–151. https://doi.org/10.20945/2359-3997000000465. (PMID: 354202719832894)
      Wing RR, Lang W, Wadden TA, Safford M, Knowler WC, Bertoni AG, Hill JO, Brancati FL, Peters A, Wagenknecht L (2011) Look AHEAD Research Group Benefits of modest weight loss in improving cardiovascular risk factors in overweight and obese individuals with type 2 diabetes. Diabetes Care 34:1481–1486. https://doi.org/10.2337/DC10-2415/-/DC1. (PMID: 215932943120182)
      Glass LM, Dickson RC, Anderson JC, Suriawinata AA, Putra J, Berk BS, Toor A (2015) Total body weight loss of ≥ 10 % is associated with improved hepatic fibrosis in patients with nonalcoholic steatohepatitis. Dig Dis Sci 60:1024–1030. https://doi.org/10.1007/S10620-014-3380-3. (PMID: 25354830)
      Group TLAS, Gregg EW (2016) Association of the magnitude of weight loss and physical fitness change on long-term CVD outcomes: the Look AHEAD study. Lancet Diabetes Endocrinol 4:913–921. https://doi.org/10.1016/S2213-8587(16)30162-0.
      Magkos F, Fraterrigo G, Yoshino J, Luecking C, Kirbach K, Kelly SC, de Las FL, He S, Okunade AL, Patterson BW, Klein S (2016) Effects of moderate and subsequent progressive weight loss on metabolic function and adipose tissue biology in humans with obesity. Cell Metab 23:591–601. https://doi.org/10.1016/J.CMET.2016.02.005. (PMID: 269163634833627)
      Carraro RS, Souza GF, Solon C, Razolli DS, Chausse B, Barbizan R, Victorio SC, Velloso LA (2018) Hypothalamic mitochondrial abnormalities occur downstream of inflammation in diet-induced obesity. Mol Cell Endocrinol 460:238–245. https://doi.org/10.1016/J.MCE.2017.07.029. (PMID: 28760600)
      de Mello AH, Schraiber RB, Goldim MPS, Mathias K, Mendes C, Corrêa MEAB, Gomes ML, Silveira PCL, Schuck PF, Petronilho F, Rezin GT (2019) Omega-3 polyunsaturated fatty acids have beneficial effects on visceral fat in diet-induced obesity model. Biochem Cell Biol 97:693–701. https://doi.org/10.1139/bcb-2018-0361. (PMID: 31774300)
      Dinh CH, Szabo A, Yu Y, Camer D, Wang H, Huang XF (2015) Bardoxolone methyl prevents mesenteric fat deposition and inflammation in high-fat diet mice. Scientific World Journal 2015:549352. https://doi.org/10.1155/2015/549352. (PMID: 266181934651788)
      Crispino M, Trinchese G, Penna E, Cimmino F, Catapano A, Villano I, Perrone-Capano C, Mollica MP (2020) Interplay between peripheral and central inflammation in obesity-promoted disorders: the impact on synaptic mitochondrial functions. Int J Mol Sci 21:1–22. https://doi.org/10.3390/IJMS21175964.
      Fernández-Sánchez A, Madrigal-Santillán E, Bautista M, Esquivel-Soto J, Morales-González A, Esquivel-Chirino C, Durante-Montiel I, Sánchez-Rivera G, Valadez-Vega C, Morales-González JA (2011) Inflammation, oxidative stress, and obesity. Int J Mol Sci 12:3117–3132. https://doi.org/10.3390/ijms12053117. (PMID: 216861733116179)
      Barathmanikanth S, Kalishwaralal K, Sriram M, Pandian SR, Youn HS, Eom S, Gurunathan S (2010) Anti-oxidant effect of gold nanoparticles restrains hyperglycemic conditions in diabetic mice. J Nanobiotechnology 8:16. https://doi.org/10.1186/1477-3155-8-16. (PMID: 206300722914719)
      Zhou YT, He W, Wamer WG, Hu X, Wu X, Lo YM, Yin JJ (2013) Enzyme-mimetic effects of gold@platinum nanorods on the antioxidant activity of ascorbic acid. Nanoscale 5:1583–1591. https://doi.org/10.1039/c2nr33072e. (PMID: 23329011)
      Lee YG, Chou HC, Chen YT, Tung SY, Ko TL, Buyandelger B, Wen LL, Juan SH (2022) l-Carnitine reduces reactive oxygen species/endoplasmic reticulum stress and maintains mitochondrial function during autophagy-mediated cell apoptosis in perfluorooctanesulfonate-treated renal tubular cells. Sci Rep 12:4673. https://doi.org/10.1038/s41598-022-08771-3. (PMID: 353045868933466)
      Muñoz A, Costa M (2013) Nutritionally mediated oxidative stress and inflammation. Oxid Med Cell Longev 2013:610950. https://doi.org/10.1155/2013/610950. (PMID: 238442763697417)
      Lancaster JR (2006) Nitroxidative, nitrosative, and nitrative stress: kinetic predictions of reactive nitrogen species chemistry under biological conditions. Chem Res Toxicol 19:1160–1174. https://doi.org/10.1021/TX060061W. (PMID: 16978020)
      Bender SB, Herrick EK, Lott ND, Klabunde RE (2007) Diet-induced obesity and diabetes reduce coronary responses to nitric oxide due to reduced bioavailability in isolated mouse hearts. Diabetes Obes Metab 9:688–696. https://doi.org/10.1111/J.1463-1326.2006.00650.X. (PMID: 17697061)
      Higashi Y, Sasaki S, Nakagawa K, Matsuura H, Chayama K, Oshima T (2001) Effect of obesity on endothelium-dependent, nitric oxide-mediated vasodilation in normotensive individuals and patients with essential hypertension. Am J Hypertens 14:1038–1045. https://doi.org/10.1016/S0895-7061(01)02191-4. (PMID: 11710783)
      Koeck T, Willard B, Crabb JW, Kinter M, Stuehr DJ, Aulak KS (2009) Glucose-mediated tyrosine nitration in adipocytes: targets and consequences. Free Radic Biol Med 46:884–892. https://doi.org/10.1016/J.FREERADBIOMED.2008.12.010. (PMID: 19135148)
      Birben E, Sahiner UM, Sackesen C, Erzurum S, Kalayci O (2012) Oxidative stress and antioxidant defense. World Allergy Organ J 5:9–19. https://doi.org/10.1097/WOX.0b013e3182439613. (PMID: 232684653488923)
      Fedorova M, Bollineni RC, Hoffmann R (2014) Protein carbonylation as a major hallmark of oxidative damage: update of analytical strategies. Mass Spectrom Rev 33:79–97. https://doi.org/10.1002/MAS.21381. (PMID: 23832618)
      Andrade A, Pinto SC, Oliveira RS (2002) Animais de laboratório criação e experimentação. FIOCRUZ, Rio de Janeiro.
      Barbosa KBF, Costa NMB, de Alfenas R, CG, De Paula SO, Minim VPR, Bressan J, (2010) Estresse oxidativo: conceito, implicações e fatores modulatórios. Rev Nutr 23:629–643. https://doi.org/10.1590/S1415-52732010000400013.
      Nolfi-Donegan D, Braganza A, Shiva S (2020) Mitochondrial electron transport chain: oxidative phosphorylation, oxidant production, and methods of measurement. Redox Biol 37:101674. https://doi.org/10.1016/j.redox.2020.101674. (PMID: 328117897767752)
      Jodeiri Farshbaf M, Kiani-Esfahani A (2018) Succinate dehydrogenase: prospect for neurodegenerative diseases. Mitochondrion 42:77–83. https://doi.org/10.1016/J.MITO.2017.12.002. (PMID: 29225013)
      Hüttemann M, Lee I, Pecinova A, Pecina P, Przyklenk K, Doan JW (2008) Regulation of oxidative phosphorylation, the mitochondrial membrane potential, and their role in human disease. J Bioenerg Biomembr 40:445–456. https://doi.org/10.1007/s10863-008-9169-3. (PMID: 18843528)
      Li Y, Park J-S, Deng J-H, Bai Y (2006) Cytochrome c oxidase subunit IV is essential for assembly and respiratory function of the enzyme complex. J Bioenerg Biomembr 38:283–291. https://doi.org/10.1007/s10863-006-9052-z. (PMID: 170913991885940)
      Mansilla N, Racca S, Gras DE, Gonzalez DH, Welchen E (2018) The complexity of mitochondrial complex IV: an update of cytochrome c oxidase biogenesis in plants. Int J Mol Sci 19:662. https://doi.org/10.3390/ijms19030662. (PMID: 294954375877523)
      Davidson TL, Chan K, Jarrard LE, Kanoski SE, Clegg DJ, Benoit SC (2009) Contributions of the hippocampus and medial prefrontal cortex to energy and body weight regulation. Hippocampus 19:235–252. https://doi.org/10.1002/hipo.20499. (PMID: 188310002649976)
      Lee TH, Yau S (2020) From obesity to hippocampal neurodegeneration: pathogenesis and non-pharmacological interventions. Int J Mol Sci 22:201. https://doi.org/10.3390/ijms22010201. (PMID: 333791637796248)
      Ferreira LSS, Fernandes CS, Vieira MNN, De Felice FG (2018) Insulin resistance in Alzheimer’s disease. Front Neurosci 12:830. https://doi.org/10.3389/fnins.2018.00830. (PMID: 305422576277874)
      Huang X, El-Sayed IH, Yi X, El-Sayed MA (2005) Gold nanoparticles: catalyst for the oxidation of NADH to NAD+. J Photochem Photobiol B 81:76–83. https://doi.org/10.1016/j.jphotobiol.2005.05.010. (PMID: 16125965)
      Murphy MP (2009) How mitochondria produce reactive oxygen species. Biochemical Journal 417:1–13. https://doi.org/10.1042/BJ20081386. (PMID: 19061483)
      Mescka CP, Rosa AP, Schirmbeck G, da Rosa TH, Catarino F, de Souza LO, Guerreiro G, Sitta A, Vargas CR, Dutra-Filho CS (2016) L-carnitine prevents oxidative stress in the brains of rats subjected to a chemically induced chronic model of MSUD. Mol Neurobiol 53:6007–6017. https://doi.org/10.1007/S12035-015-9500-Z/FIGURES/3. (PMID: 26526843)
    • Contributed Indexing:
      Keywords: Brain; Carnitine; Energy metabolism; Gold nanoparticles; Obesity; Oxidative stress
    • Accession Number:
      S7UI8SM58A (Carnitine)
      7440-57-5 (Gold)
    • Publication Date:
      Date Created: 20240131 Date Completed: 20240821 Latest Revision: 20240821
    • Publication Date:
      20240822
    • Accession Number:
      10.1007/s12035-024-03984-1
    • Accession Number:
      38296901