SARS-CoV-2 infections among pregnant women, 2020, Finland-Cross-testing of neutralization assays.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Wiley-Liss Country of Publication: United States NLM ID: 7705876 Publication Model: Print Cited Medium: Internet ISSN: 1096-9071 (Electronic) Linking ISSN: 01466615 NLM ISO Abbreviation: J Med Virol Subsets: MEDLINE
    • Publication Information:
      Publication: New York Ny : Wiley-Liss
      Original Publication: New York, Liss.
    • Subject Terms:
    • Abstract:
      We studied the development of the severe acute respiratory syndrome-related coronavirus (SARS-CoV-2) pandemic in southern Finland in 2020 and evaluated the performance of two surrogate immunoassays for the detection of neutralizing antibodies (NAbs). The data set consisted of 12 000 retrospectively collected samples from pregnant women in their first trimester throughout 2020. All the samples were initially screened for immunoglobulin G (IgG) with SARS-CoV-2 spike antibody assay (EIM-S1, Euroimmun) followed by confirmation with nucleocapsid antibody assay (Architect SARS-CoV-2, Abbott). Samples that were reactive (positive or borderline) with both assays were subjected to testing with commercial surrogate immunoassays of NeutraLISA (EIM) and cPass TM (GenScript Biotech Corporation) by using pseudoneutralization assay (PNAbA) as a golden standard. No seropositive cases were detected between January and March. Between April and December, IgG (EIM-S1 and Abbott positive) and NAb (PNAbA positive) seroprevalences were between 0.4% and 1.4%. NeutraLISA showed 90% and cPass 55% concordant results with PNAbA among PNAbA negative samples and 49% and 92% among PNAbA positive samples giving NeutraLISA better specificity but lower sensitivity than cPass. To conclude, seroprevalence in pregnant women reflected that of the general population but the variability of the performance of serological protocols needs to be taken into account in inter-study comparison.
      (© 2024 The Authors. Journal of Medical Virology published by Wiley Periodicals LLC.)
    • References:
      Haveri A, Smura T, Kuivanen S, et al. Serological and molecular findings during SARS-CoV-2 infection: the first case study in Finland, January to February 2020. Euro Surveill. 2020;25(11):2000266.
      Finnish Institute for Health and Welfare database. Koronatapaukset, sairaalahoidon tilanne ja kuolemat. 2020. Accessed February 5, 2023. https://www.thl.fi/episeuranta/tautitapaukset/koronakartta.html.
      Melin M, Palmu A. Finnish Institute for Health and Welfare: Report of THL serological population study of the coronavirus epidemic. 2022. Accessed February 5, 2023. https://www.thl.fi/roko/cov-vaestoserologia/sero_report_weekly_en.html.
      European Centre for Disease Prevention and Control. Considerations for the use of antibody tests for SARS-CoV-2 - first update. ECDC; 2022.
      VanBlargan LA, Goo L, Pierson TC. Deconstructing the antiviral neutralizing-antibody response: implications for vaccine development and immunity. Microbiol Mol Biol Rev. 2016;80(4):989-1010.
      Bonifacio MA, Laterza R, Vinella A, et al. Correlation between in vitro neutralization assay and serological tests for protective antibodies detection. Int J Mol Sci. 2022;23(17):9566.
      Girl P, Zwirglmaier K, von Buttlar H, Wölfel R, Müller K. Evaluation of two rapid lateral flow tests and two surrogate ELISAs for the detection of SARS-CoV-2 specific neutralizing antibodies. Front Med. 2022;9:820151.
      Graninger M, Jani CM, Reuberger E, et al. Comprehensive comparison of seven SARS-CoV-2-specific surrogate virus neutralization and anti-Spike IgG antibody assays using a Live-Virus neutralization assay as a reference. Microbiol Spectr. 2023;11(1):e0231422.
      Jääskeläinen A, Kuivanen S, Kekäläinen E, et al. Performance of six SARS-CoV-2 immunoassays in comparison with microneutralisation. J Clin Virol. 2020;129:104512.
      Fred SM, Kuivanen S, Ugurlu H, et al. Antidepressant and antipsychotic drugs reduce viral infection by SARS-CoV-2 and fluoxetine shows antiviral activity against the novel variants in vitro. Front Pharmacol. 2022;12:755600.
      Statistics Finland's free-of-charge statistical databases-Key figures on population by region, 1990-2021. Accessed May 2, 2023. https://pxdata.stat.fi/PxWeb/pxweb/en/StatFin/StatFin__vaerak/statfin_vaerak_pxt_11ra.p324.
      Freitag TL, Fagerlund R, Karam NL, et al. Intranasal administration of adenoviral vaccines expressing SARS-CoV-2 spike protein improves vaccine immunity in mouse models. Vaccine. 2023;41:3233-3246.
      Mäkelä AR, Uğurlu H, Hannula L, et al. Intranasal trimeric sherpabody inhibits SARS-CoV-2 including recent immunoevasive omicron subvariants. Nat Commun. 2023;14(1):1637.
      Tan CW, Chia WN, Qin X, et al. A SARS-CoV-2 surrogate virus neutralization test based on antibody-mediated blockage of ACE2-spike protein-protein interaction. Nature Biotechnol. 2020;38(9):1073-1078.
      Posit Team. Team R RStudio: Integrated Development Environment for R. Posit Software; 2023. http://www.posit.co/.
      R Core Team. Team RC A Language and Environment for Statistical Computing version 4.2.2. R Foundation for Statistical Computing; 2022.
      Wickham H. Reshaping data with the reshape package. J Stat Softw. 2007;21(12):1-20.
      Wickham H. ggplot2: Elegant Graphics for Data Analysis. Springer-Verlag New York; 2016.
      Wickham HFR, Henry L, Müller K dplyr: A Grammar of Data Manipulation R package version 1010. 2022.
      World Administrative Boundaries-Countries and Territories World Food Programme (UN agency). 2019. Accessed May 2, 2023. https://public.opendatasoft.com/explore/dataset/world-administrative-boundaries/export/?q=Finland&location=5,66.61492,28.22754&basemap=jawg.light.
      Kuntapohjaiset tilastointialueet Statistics Finland. Accessed 2 May 2023. https://www.paikkatietohakemisto.fi/geonetwork/srv/fin/catalog.search#/metadata/b4693347808-0f3b-4d5e-b366-c410b680ac19.
      Kantele A, Lääveri T, Kareinen L, et al. SARS-CoV-2 infections among healthcare workers at Helsinki university hospital, Finland, spring 2020: serosurvey, symptoms and risk factors. Travel Med Infect Dis. 2021;39:101949.
      Mattern J, Vauloup-Fellous C, Zakaria H, et al. Post lockdown COVID-19 seroprevalence and circulation at the time of delivery, France. PLoS One. 2020;15(10):e0240782.
      Vaselli NM, Hungerford D, Shenton B, Khashkhusha A, Cunliffe NA, French N. The seroprevalence of SARS-CoV-2 during the first wave in Europe 2020: a systematic review. PLoS One. 2021;16(11):e0250541.
      Cosma S, Borella F, Carosso A, et al. The “scar” of a pandemic: cumulative incidence of COVID-19 during the first trimester of pregnancy. J Med Virol. 2021;93(1):537-540.
      Egerup P, Fich Olsen L, Christiansen AMH, et al. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) antibodies at delivery in women, partners, and newborns. Obstet Gynecol. 2021;137(1):49-55.
      Eskild A, Mørkrid L, Mortensen SB, Leegaard TM. Prevalence of antibodies against SARS-CoV-2 among pregnant women in Norway during the period December 2019 through December 2020. Epidemiol Infect. 2022;150:e28.
      Flannery DD, Gouma S, Dhudasia MB, et al. SARS-CoV-2 seroprevalence among parturient women in Philadelphia. Sci Immunol. 2020;5(49):eabd5709.
      Veerus P, Salumets A, Naaber P, et al. Seroprevalence of SARS-CoV-2 antibodies among pregnant women in Estonia: a call for epidemiological studies. Acta Obstet Gynecol Scand. 2020;99(12):1736-1737.
      Villalaín C, Herraiz I, Luczkowiak J, et al. Seroprevalence analysis of SARS-CoV-2 in pregnant women along the first pandemic outbreak and perinatal outcome. PLoS One. 2020;15(11):e0243029.
      García-Carreras B, Hitchings MDT, Johansson MA, et al. Accounting for assay performance when estimating the temporal dynamics in SARS-CoV-2 seroprevalence in the U.S. Nat Commun. 2023;14(1):2235.
      Pieri M, Infantino M, Manfredi M, et al. Performance evaluation of four surrogate virus neutralization tests (sVNTs) in comparison to the in vivo gold standard test. Front Biosci. 2022;27(2):074.
      Hofmann N, Grossegesse M, Neumann M, Schaade L, Nitsche A. Evaluation of a commercial ELISA as alternative to plaque reduction neutralization test to detect neutralizing antibodies against SARS-CoV-2. Sci Rep. 2022;12(1):3549.
      Tan SS, Saw S, Chew KL, et al. Head-to-head evaluation on diagnostic accuracies of six SARS-CoV-2 serological assays. Pathology. 2020;52(7):770-777.
      El-Ghitany EM, Hashish MH, Farghaly AG, Omran EA. Determining the SARS-CoV-2 Anti-Spike cutoff level denoting neutralizing activity using two commercial kits. Vaccines. 2022;10(11):1952.
      Olbrich L, Castelletti N, Schälte Y, et al. Head-to-head evaluation of seven different seroassays including direct viral neutralisation in a representative cohort for SARS-CoV-2. J Gen Virol. 2021;102(10):001653.
    • Grant Information:
      TYH2021110 Helsinki University Hospital fundings; TYH2023102 Helsinki University Hospital fundings; Jane and Aatos Erkko foundation
    • Contributed Indexing:
      Keywords: IgG; SARS-CoV-2; neutralizing antibodies; serology
    • Accession Number:
      0 (Antibodies, Neutralizing)
      0 (Antibodies, Viral)
      0 (Immunoglobulin G)
    • Publication Date:
      Date Created: 20240131 Date Completed: 20240201 Latest Revision: 20240710
    • Publication Date:
      20240711
    • Accession Number:
      10.1002/jmv.29415
    • Accession Number:
      38293724