Quantification of [ 99 Tc]TcO 4 - in urine by means of anion-exchange chromatography-aerosol desolvation nebulization-inductively coupled plasma-mass spectrometry.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer-Verlag Country of Publication: Germany NLM ID: 101134327 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1618-2650 (Electronic) Linking ISSN: 16182642 NLM ISO Abbreviation: Anal Bioanal Chem Subsets: MEDLINE
    • Publication Information:
      Original Publication: Heidelberg : Springer-Verlag, 2002-
    • Subject Terms:
    • Abstract:
      To sensitively determine 99 Tc, a new method for internal quantification of its most common and stable species, [ 99 Tc]Tc O 4 - , was developed. Anion-exchange chromatography (IC) was coupled to inductively coupled plasma-mass spectrometry (ICP-MS) and equipped with an aerosol desolvation system to provide enhanced detection power. Due to a lack of commercial Tc standards, an isotope dilution-like approach using a Ru spike and called isobaric dilution analysis (IBDA) was used for internal quantification of 99 Tc. This approach required knowledge of the sensitivities of 99 Ru and 99 Tc in ICP-MS. The latter was determined using an in-house prepared standard manufactured from decayed medical 99m Tc-generator eluates. This standard was cleaned and preconcentrated using extraction chromatography with TEVA resin and quantified via total reflection X-ray fluorescence (TXRF) analysis. IC coupled to ICP-MS enabled to separate, detect and quantify [ 99 Tc]Tc O 4 - as most stable Tc species in complex environments, which was demonstrated in a proof of concept. We quantified this species in untreated and undiluted raw urine collected from a patient, who previously underwent scintigraphy with a 99m Tc-tracer, and determined a concentration of 19.6 ± 0.5 ng L -1 . The developed method has a high utility to characterize a range of Tc-based radiopharmaceuticals, to determine concentrations, purity, and degradation products in complex samples without the need to assess activity parameters of 99(m) Tc.
      (© 2024. The Author(s).)
    • References:
      National Nuclear Data Center. Information extracted from the NuDat 3 database. 2023. https://www.nndc.bnl.gov/nudat3/ . Accessed 10/09/2023.
      Schwochau K. Technetium radiopharmaceuticals - fundamentals, synthesis, structure, and development. Angew Chemie Int Ed English. 1994;33:2258–67. https://doi.org/10.1002/anie.199422581 . (PMID: 10.1002/anie.199422581)
      Boschi A, Uccelli L, Martini P. A picture of modern Tc-99m radiopharmaceuticals: production, chemistry, and applications in molecular imaging. Appl Sci. 2019;9:1–16. https://doi.org/10.3390/app9122526 . (PMID: 10.3390/app9122526)
      Organisation for Economic Co-operation and Development, Nuclear Energy Agency. The supply of medical isotopes: an economic diagnosis and possible solutions. Paris 2019.
      International Atomic Energy Agency. Technetium-99m radiopharmaceuticals: manufacture of kits. Vienna 2008.
      Crișan G, Moldovean-Cioroianu NS, Timaru D-G, Andrieș G, Căinap C, Chiș V. Radiopharmaceuticals for PET and SPECT imaging: a literature review over the last decade. Int J Mol Sci. 2022;23:5023. https://doi.org/10.3390/ijms23095023 . (PMID: 10.3390/ijms23095023355634149103893)
      Eckelman W, Richards P. Instant 99mTc-DTPA. J Nucl Med. 1970;11:761. (PMID: 5490410)
      Eckardt J, Geworski L, Lerch H, Reiners C, Schober O. Empfehlungen zur Qualitätskontrolle in der Nuklearmedizin: Klinik und Messtechnik. Schattauer Verlag (Thieme), Stuttgart 2009.
      Richards P. The technetium-99m generator. Radioact Pharm. 1966;155–163.
      Horstmann M, Austrup M, Busch F, Faust A, Sperling M, Karst U, Clases D. Speciation analysis of Tc radiopharmaceuticals by HPLC-ICP-MS and HPLC-ESI-HRMS. J Anal At Spectrom. 2023;38:2038–45. https://doi.org/10.1039/D3JA00257H . (PMID: 10.1039/D3JA00257H)
      Ponto JA. Expiration times for Tc-99m. J Nucl Med Technol. 1981;9:40–1.
      Verduyckt T, Kieffer D, Huyghe D, Cleynhens B, Verbeke K, Verbruggen A, Bormans G. Identity confirmation of 99mTc-MAG3, 99mTc-Sestamibi and 99mTc-ECD using radio-LC-MS. J Pharm Biomed Anal. 2003;32:669–78. https://doi.org/10.1016/S0731-7085(03)00174-2 . (PMID: 10.1016/S0731-7085(03)00174-212899957)
      Nabati M, Sabahnoo H, Bodaghi-Namileh V. Molecular structure Determination and stability parameters study of 99mTc-MDP (technetium 99m Methylene diphosphonate) cold kit and analysis of its binding to osteocalcin receptor as a bone scan agent. Chem Methodol. 2019;4:297–310. https://doi.org/10.33945/SAMI/CHEMM.2020.3.7 . (PMID: 10.33945/SAMI/CHEMM.2020.3.7)
      Beasley TM, Palmer HE, Nelp WB. Distribution and excretion of technetium in humans. Health Phys. 1966;12:1425–35. https://doi.org/10.1097/00004032-196610000-00004 . (PMID: 10.1097/00004032-196610000-000045972440)
      Villar M, Borràs A, Avivar J, Vega F, Cerdà V, Ferrer L. Fully automated system for 99Tc monitoring in hospital and urban residues: a simple approach to waste management. Anal Chem. 2017;89:5857–63. https://doi.org/10.1021/acs.analchem.7b00184 . (PMID: 10.1021/acs.analchem.7b0018428478682)
      Clases D, Sperling M, Karst U. Analysis of metal-based contrast agents in medicine and the environment. Trends Anal Chem. 2018;104:135–47. https://doi.org/10.1016/j.trac.2017.12.011 . (PMID: 10.1016/j.trac.2017.12.011)
      Hill DM, Barnes RK, Wong HKY, Zawadzki AW. The quantification of technetium in generator-derived pertechnetate using ICP-MS. Appl Radiat Isot. 2000;53:415–9. https://doi.org/10.1016/S0969-8043(99)00280-8 . (PMID: 10.1016/S0969-8043(99)00280-810972146)
      Shi KL, Hou XL, Roos P, Wu WS. Determination of technetium-99 in environmental samples: a review. Anal Chim Acta. 2012;709:1–20. https://doi.org/10.1016/j.aca.2011.10.020 . (PMID: 10.1016/j.aca.2011.10.02022122926)
      Shi K, Qiao J, Wu W, Roos P, Hou X. Rapid determination of technetium-99 in large volume seawater samples using sequential injection extraction chromatographic separation and ICP-MS measurement. Anal Chem. 2012;84:6783–9. https://doi.org/10.1021/ac301319a . (PMID: 10.1021/ac301319a22783983)
      Guérin N, Riopel R, Kramer-Tremblay S, de Silva N, Cornett J, Dai X. Determination of 99Tc in fresh water using TRU resin by ICP-MS. Anal Chim Acta. 2017;988:114–20. https://doi.org/10.1016/j.aca.2017.08.013 . (PMID: 10.1016/j.aca.2017.08.01328916097)
      Matsueda M, Yanagisawa K, Koarai K, Terashima M, Fujiwara K, Abe H, Kitamura A, Takagai Y. Online solid-phase extraction-inductively coupled plasma-quadrupole mass spectrometry with oxygen dynamic reaction for quantification of technetium-99. ACS Omega. 2021;6:19281–90. https://doi.org/10.1021/acsomega.1c02756 . (PMID: 10.1021/acsomega.1c02756343372658320326)
      Clases D, Birka M, Sperling M, Faust A, Karst U. Isobaric dilution analysis as a calibration tool for long lived radionuclides in ICP-MS. J Trace Elem Med Biol. 2017;40:97–103. https://doi.org/10.1016/j.jtemb.2017.01.002 . (PMID: 10.1016/j.jtemb.2017.01.00228159228)
      Birka M, Wehe CA, Telgmann L, Sperling M, Karst U. Sensitive quantification of gadolinium-based magnetic resonance imaging contrast agents in surface waters using hydrophilic interaction liquid chromatography and inductively coupled plasma sector field mass spectrometry OH OH OH. J Chromatogr A. 2013;1308:125–31. https://doi.org/10.1016/j.chroma.2013.08.017 . (PMID: 10.1016/j.chroma.2013.08.01723958698)
      Rodríguez-González P, Marchante-Gayón JM, García Alonso JI, Sanz-Medel A. Isotope dilution analysis for elemental speciation: a tutorial review. Spectrochim Acta - Part B At Spectrosc. 2005;60:151–207. https://doi.org/10.1016/j.sab.2005.01.005 . (PMID: 10.1016/j.sab.2005.01.005)
      Macke M, Quarles CD, Sperling M, Karst U. Fast and automated monitoring of gadolinium-based contrast agents in surface waters. Water Res. 2021;207:117836. https://doi.org/10.1016/j.watres.2021.117836 . (PMID: 10.1016/j.watres.2021.11783634798450)
      Quarles CD, Toms AD, Smith R, Sullivan P, Bass D, Leone J. Automated ICP-MS method to measure bromine, chlorine, and iodine species and total metals content in drinking water. Talanta Open. 2020;1. https://doi.org/10.1016/j.talo.2020.100002.
      Quarles CD, Sullivan P, Bohlim N, Saetveit N. Rapid automated total arsenic and arsenic speciation by inductively coupled plasma mass spectrometry. J Anal At Spectrom. 2022;37:1240–6. https://doi.org/10.1039/d2ja00055e . (PMID: 10.1039/d2ja00055e)
      Terzano R, Denecke MA, Falkenberg G, Miller B, Paterson D, Janssens K. Recent advances in analysis of trace elements in environmental samples by X-ray based techniques (IUPAC Technical Report). Pure Appl Chem. 2019;91:1029–63. https://doi.org/10.1515/pac-2018-0605 . (PMID: 10.1515/pac-2018-0605328314077433040)
      Damasceno A, Pijeira MSO, Ricci-Junior E, Alencar LMR, İlem-Özdemir D, Santos-Oliveira R. Exploiting the extemporaneousness of radiopharmaceuticals: radiolabeling stability under diverse conditions. J Pharm Biomed Anal. 2022;221. https://doi.org/10.1016/j.jpba.2022.115024.
      Van den Wyngaert T, Strobel K, Kampen WU, Kuwert T, van der Bruggen W, Mohan HK, Gnanasegaran G, Delgado-Bolton R, Weber WA, Beheshti M, Langsteger W, Giammarile F, Mottaghy FM, Paycha F. The EANM practice guidelines for bone scintigraphy. Eur J Nucl Med Mol Imaging. 2016;43:1723–38. https://doi.org/10.1007/s00259-016-3415-4 . (PMID: 10.1007/s00259-016-3415-4272627014932135)
      Hoch DJ, Pinkerton TC. Reversed-Phase HPLC of 99mTc methylene diphosphonate bone imaging kits with quantification of pertechnetate. Appl Radiat Isot. 1986;37:593–8. https://doi.org/10.1016/0883-2889(86)90078-x . (PMID: 10.1016/0883-2889(86)90078-x)
      van den Brand JAGM, Das HA, Dekker BG, de Ligny CL. The influence of experimental conditions on the efficiency of the labeling of 1-hydroxy-ethylidene-1,1-di sodium phosphonate with 99mTc, using Sn(II) as the reductant. Int J Appl Radiat Isot. 1979;30:185–7. https://doi.org/10.1016/0020-708X(79)90131-5 . (PMID: 10.1016/0020-708X(79)90131-5)
      Libson K, Deutsch E. Structural characterization of a 99Tc-diphosphonate complex. Implications for the chemistry of 99mTc skeletal imaging agents. J Am Chem Soc. 1980;102:2476–8. (PMID: 10.1021/ja00527a066)
    • Grant Information:
      CRC 1450 - 431460824 Deutsche Forschungsgemeinschaft
    • Contributed Indexing:
      Keywords: Elemental speciation; Hyphenated ICP-MS techniques; On-line calibration; Pertechnetate; Trace analysis
    • Accession Number:
      0 (Anions)
      0 (Indicators and Reagents)
    • Publication Date:
      Date Created: 20240130 Date Completed: 20240415 Latest Revision: 20240729
    • Publication Date:
      20240729
    • Accession Number:
      PMC11009747
    • Accession Number:
      10.1007/s00216-024-05149-4
    • Accession Number:
      38289357