Hi-Tag: a simple and efficient method for identifying protein-mediated long-range chromatin interactions with low cell numbers.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Science China Press, co-published with Springer Country of Publication: China NLM ID: 101529880 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1869-1889 (Electronic) Linking ISSN: 16747305 NLM ISO Abbreviation: Sci China Life Sci Subsets: MEDLINE
    • Publication Information:
      Original Publication: Beijing : Science China Press, co-published with Springer
    • Subject Terms:
    • Abstract:
      Protein-mediated chromatin interactions can be revealed by coupling proximity-based ligation with chromatin immunoprecipitation. However, these techniques require complex experimental procedures and millions of cells per experiment, which limits their widespread application in life science research. Here, we develop a novel method, Hi-Tag, that identifies high-resolution, long-range chromatin interactions through transposase tagmentation and chromatin proximity ligation (with a phosphorothioate-modified linker). Hi-Tag can be implemented using as few as 100,000 cells, involving simple experimental procedures that can be completed within 1.5 days. Meanwhile, Hi-Tag is capable of using its own data to identify the binding sites of specific proteins, based on which, it can acquire accurate interaction information. Our results suggest that Hi-Tag has great potential for advancing chromatin interaction studies, particularly in the context of limited cell availability.
      (© 2024. Science China Press.)
    • References:
      Abdennur, N., Fudenberg, G., Flyamer, I. M., Galitsyna, A.A., Goloborodko, A., Imakaev, M., and Venev, S.V. (2023). Pairtools: from sequencing data to chromosome contacts. bioRxiv: bioRxiv, 528389.
      Bhattacharyya, S., Chandra, V., Vijayanand, P., and Ay, F. (2019). Identification of significant chromatin contacts from HiChIP data by FitHiChIP. Nat Commun 10, 4221. (PMID: 10.1038/s41467-019-11950-y315308186748947)
      Creyghton, M.P., Cheng, A.W., Welstead, G.G., Kooistra, T., Carey, B.W., Steine, E.J., Hanna, J., Lodato, M.A., Frampton, G.M., Sharp, P.A., et al. (2010). Histone H3K27ac separates active from poised enhancers and predicts developmental state. Proc Natl Acad Sci USA 107, 21931–21936. (PMID: 10.1073/pnas.1016071107211067593003124)
      de Souza, N. (2012). The ENCODE project. Nat Methods 9, 1046. (PMID: 10.1038/nmeth.223823281567)
      Dekker, J., Rippe, K., Dekker, M., and Kleckner, N. (2002). Capturing chromosome conformation. Science 295, 1306–1311. (PMID: 10.1126/science.106779911847345)
      Dostie, J., and Dekker, J. (2007). Mapping networks of physical interactions between genomic elements using 5C technology. Nat Protoc 2, 988–1002. (PMID: 10.1038/nprot.2007.11617446898)
      Flyamer, I.M., Illingworth, R.S. and Bickmore, W.A. (2020). Coolpup.py: versatile pile-up analysis of Hi-C data. Bioinformatics 36, 2980–2985. (PMID: 10.1093/bioinformatics/btaa073320037917214034)
      Fornes, O., Castro-Mondragon, J.A., Khan, A., van der Lee, R., Zhang, X., Richmond, P.A., Modi, B.P., Correard, S., Gheorghe, M., Baranašić, D., et al. (2020). JASPAR 2020: update of the open-access database of transcription factor binding profiles. Nucleic Acids Res 48, D87–D92. (PMID: 31701148)
      Gaspar, J.M. (2018). Improved peak-calling with MACS2. bioRxiv, 496521.
      Grant, C.E., Bailey, T.L., and Noble, W.S. (2011). FIMO: scanning for occurrences of a given motif. Bioinformatics 27, 1017–1018. (PMID: 10.1093/bioinformatics/btr064213302903065696)
      Kaya-Okur, H.S., Wu, S.J., Codomo, C.A., Pledger, E.S., Bryson, T.D., Henikoff, J.G., Ahmad, K., and Henikoff, S. (2019). CUT&Tag for efficient epigenomic profiling of small samples and single cells. Nat Commun 10, 1930. (PMID: 10.1038/s41467-019-09982-5310368276488672)
      Krijger, P.H.L., and de Laat, W. (2016). Regulation of disease-associated gene expression in the 3D genome. Nat Rev Mol Cell Biol 17, 771–782. (PMID: 10.1038/nrm.2016.13827826147)
      Krueger, F. (2012). Trim Galore: a wrapper tool around Cutadapt and FastQC to consistently apply quality and adapter trimming to FastQ files, with some extra functionality for MspI-digested RRBS-type (Reduced Representation Bisufite-Seq) libraries. Available from URL: http://www.bioinformatics.babraham.ac.uk/projects/trim_galore/ .(Date of access: 28/04/2016).
      Li, H. (2013). Aligning sequence reads, clone sequences and assembly contigs with BWA-MEM. arXiv, 1303.3997.
      Li, H., and Durbin, R. (2009). Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics 25, 1754–1760. (PMID: 10.1093/bioinformatics/btp324194511682705234)
      Li, X., Luo, O.J., Wang, P., Zheng, M., Wang, D., Piecuch, E., Zhu, J.J., Tian, S.Z., Tang, Z., Li, G., et al. (2017). Long-read ChIA-PET for base-pair-resolution mapping of haplotype-specific chromatin interactions. Nat Protoc 12, 899–915. (PMID: 10.1038/nprot.2017.012283583945537732)
      Lieberman-Aiden, E., van Berkum, N.L., Williams, L., Imakaev, M., Ragoczy, T., Telling, A., Amit, I., Lajoie, B.R., Sabo, P.J., Dorschner, M.O., et al. (2009). Comprehensive mapping of long-range interactions reveals folding principles of the human genome. Science 326, 289–293. (PMID: 10.1126/science.1181369198157762858594)
      Mumbach, M.R., Rubin, A.J., Flynn, R.A., Dai, C., Khavari, P.A., Greenleaf, W.J., and Chang, H.Y. (2016). HiChIP: efficient and sensitive analysis of protein-directed genome architecture. Nat Methods 13, 919–922. (PMID: 10.1038/nmeth.3999276438415501173)
      Quinlan, A.R., and Hall, I.M. (2010). BEDTools: a flexible suite of utilities for comparing genomic features. Bioinformatics 26, 841–842. (PMID: 10.1093/bioinformatics/btq033201102782832824)
      Ramírez, F., Ryan, D.P., Grüning, B., Bhardwaj, V., Kilpert, F., Richter, A.S., Heyne, S., Dündar, F., and Manke, T. (2016). deepTools2: a next generation web server for deep-sequencing data analysis. Nucleic Acids Res 44, W160–W165. (PMID: 10.1093/nar/gkw257270799754987876)
      Sati, S., Jones, P., Kim, H. S., Zhou, L.A., Rapp-Reyes, E., and Leung, T.H. (2022). HiCuT: an efficient and low input method to identify protein-directed chromatin interactions. PLoS Genet 18, e1010121. (PMID: 10.1371/journal.pgen.1010121353202788979432)
      Simonis, M., Klous, P., Splinter, E., Moshkin, Y., Willemsen, R., de Wit, E., van Steensel, B., and de Laat, W. (2006). Nuclear organization of active and inactive chromatin domains uncovered by chromosome conformation capture-on-chip (4C). Nat Genet 38, 1348–1354. (PMID: 10.1038/ng189617033623)
      Wang, X., Xu, M., Zhao, G.N., Liu, G.Y., Hao, D.L., Lv, X., and Liu, D.P. (2015). Exploring CTCF and cohesin related chromatin architecture at HOXA gene cluster in primary human fibroblasts. Sci China Life Sci 58, 860–866. (PMID: 10.1007/s11427-015-4913-526376810)
      Wolff, J., Bhardwaj, V., Nothjunge, S., Richard, G., Renschler, G., Gilsbach, R., Manke, T., Backofen, R., Ramírez, F., and Grüning, B.A. (2018). Galaxy HiCExplorer: a web server for reproducible Hi-C data analysis, quality control and visualization. Nucleic Acids Res 46, W11–W16. (PMID: 10.1093/nar/gky504299018126031062)
      Xu, W., Zhong, Q., Lin, D., Zuo, Y., Dai, J., Li, G., and Cao, G. (2021). CoolBox: a flexible toolkit for visual analysis of genomics data. BMC Bioinform 22, 489. (PMID: 10.1186/s12859-021-04408-w)
      Yu, M., Juric, I., Abnousi, A., Hu, M. and Ren, B. (2021). Proximity ligation-assisted ChIP-Seq (PLAC-Seq). Methods Mol Bol 2351, 181–199. (PMID: 10.1007/978-1-0716-1597-3_10)
      Zhu, Y., Zhou, Z., Huang, T., Zhang, Z., Li, W., Ling, Z., Jiang, T., Yang, J., Yang, S., Xiao, Y., et al. (2022). Mapping and analysis of a spatiotemporal H3K27ac and gene expression spectrum in pigs. Sci China Life Sci 65, 1517–1534. (PMID: 10.1007/s11427-021-2034-535122624)
    • Contributed Indexing:
      Keywords: Hi-Tag; chromatin interactions; chromatin proximity ligation; low cell numbers; transposase tagmentation
    • Accession Number:
      0 (Chromatin)
      EC 2.7.7.- (Transposases)
    • Publication Date:
      Date Created: 20240127 Date Completed: 20240506 Latest Revision: 20240506
    • Publication Date:
      20240507
    • Accession Number:
      10.1007/s11427-023-2441-0
    • Accession Number:
      38280143