Three-component contour dynamics model to simulate and analyze amoeboid cell motility in two dimensions.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Public Library of Science Country of Publication: United States NLM ID: 101285081 Publication Model: eCollection Cited Medium: Internet ISSN: 1932-6203 (Electronic) Linking ISSN: 19326203 NLM ISO Abbreviation: PLoS One Subsets: MEDLINE
    • Publication Information:
      Original Publication: San Francisco, CA : Public Library of Science
    • Subject Terms:
    • Abstract:
      Amoeboid cell motility is relevant in a wide variety of biomedical processes such as wound healing, cancer metastasis, and embryonic morphogenesis. It is characterized by pronounced changes of the cell shape associated with expansions and retractions of the cell membrane, which result in a crawling kind of locomotion. Despite existing computational models of amoeboid motion, the inference of expansion and retraction components of individual cells, the corresponding classification of cells, and the a priori specification of the parameter regime to achieve a specific motility behavior remain challenging open problems. We propose a novel model of the spatio-temporal evolution of two-dimensional cell contours comprising three biophysiologically motivated components: a stochastic term accounting for membrane protrusions and two deterministic terms accounting for membrane retractions by regularizing the shape and area of the contour. Mathematically, these correspond to the intensity of a self-exciting Poisson point process, the area-preserving curve-shortening flow, and an area adjustment flow. The model is used to generate contour data for a variety of qualitatively different, e.g., polarized and non-polarized, cell tracks that visually resemble experimental data very closely. In application to experimental cell tracks, we inferred the protrusion component and examined its correlation to common biomarkers: the F-actin density close to the membrane and its local motion. Due to the low model complexity, parameter estimation is fast, straightforward, and offers a simple way to classify contour dynamics based on two locomotion types: the amoeboid and a so-called fan-shaped type. For both types, we use cell tracks segmented from fluorescence imaging data of the model organism Dictyostelium discoideum. An implementation of the model is provided within the open-source software package AmoePy, a Python-based toolbox for analyzing and simulating amoeboid cell motility.
      Competing Interests: The authors have declared that no competing interests exist.
      (Copyright: © 2024 Schindler et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
    • References:
      Biophys J. 2010 Jul 7;99(1):50-8. (PMID: 20655832)
      Soft Matter. 2014 Mar 7;10(9):1365-73. (PMID: 24651116)
      Biophys J. 2005 Aug;89(2):912-31. (PMID: 15951372)
      Proc Natl Acad Sci U S A. 2010 Oct 5;107(40):17079-86. (PMID: 20864631)
      Phys Rev Lett. 2013 Oct 11;111(15):158102. (PMID: 24160631)
      Sci Rep. 2017 Oct 4;7(1):12675. (PMID: 28978932)
      Biophys J. 1997 May;72(5):2382-9. (PMID: 9129842)
      Phys Biol. 2011 Aug;8(4):046006. (PMID: 21610290)
      PLoS Comput Biol. 2020 Jan 13;16(1):e1007250. (PMID: 31929522)
      J Cell Sci. 2012 Dec 15;125(Pt 24):5917-26. (PMID: 23378019)
      PLoS Comput Biol. 2013;9(7):e1003122. (PMID: 23861660)
      Phys Rev E. 2020 Feb;101(2-1):022404. (PMID: 32168566)
      PLoS One. 2008 Jul 09;3(7):e2648. (PMID: 18612377)
      Physiol Rev. 2014 Jan;94(1):235-63. (PMID: 24382887)
      Interface Focus. 2016 Oct 6;6(5):20160036. (PMID: 27708760)
      PLoS Biol. 2011 May;9(5):e1000618. (PMID: 21610858)
      Nat Commun. 2014 Oct 27;5:5175. (PMID: 25346418)
      PLoS Comput Biol. 2012;8(3):e1002392. (PMID: 22438794)
      Proc Natl Acad Sci U S A. 2020 Mar 24;117(12):6330-6338. (PMID: 32161132)
      PLoS One. 2012;7(5):e37213. (PMID: 22662138)
      J Cell Sci. 2009 Sep 15;122(Pt 18):3209-13. (PMID: 19726630)
      Cell Res. 2007 Sep;17(9):759-71. (PMID: 17576411)
      Sci Rep. 2015 Mar 17;5:9172. (PMID: 25779619)
      J Comput Phys. 2016 Mar 15;309:207-226. (PMID: 27330221)
      Annu Rev Cell Dev Biol. 2013;29:501-28. (PMID: 23909278)
      PLoS Comput Biol. 2021 Aug 23;17(8):e1009268. (PMID: 34424898)
      Biophys J. 2008 May 1;94(9):3671-83. (PMID: 18199677)
      Curr Opin Cell Biol. 2012 Apr;24(2):245-53. (PMID: 22154943)
      PLoS Comput Biol. 2012;8(12):e1002793. (PMID: 23300403)
      Biophys J. 2010 Nov 17;99(10):3345-54. (PMID: 21081083)
      Biophys J. 2013 Nov 5;105(9):2199-209. (PMID: 24209866)
      Cell. 2015 Apr 9;161(2):374-86. (PMID: 25799384)
      Soft Matter. 2017 Nov 15;13(44):8209-8222. (PMID: 29058003)
      Science. 2012 Jun 29;336(6089):1676-81. (PMID: 22745423)
      Bull Math Biol. 2004 Jan;66(1):167-93. (PMID: 14670535)
      Proc Natl Acad Sci U S A. 2013 Mar 26;110(13):5016-21. (PMID: 23479620)
      PLoS One. 2018 Aug 23;13(8):e0201977. (PMID: 30138392)
      Cytoskeleton (Hoboken). 2020 Nov;77(11):483-484. (PMID: 33141509)
      SIAM J Sci Comput. 2019;41(2):A1170-A1200. (PMID: 31798297)
      Science. 2003 Dec 5;302(5651):1704-9. (PMID: 14657486)
      Nat Cell Biol. 2017 Apr;19(4):329-340. (PMID: 28346441)
      Bull Math Biol. 2013 Aug;75(8):1377-99. (PMID: 23494144)
      PLoS Comput Biol. 2015 Oct 21;11(10):e1004280. (PMID: 26488304)
      Nat Rev Mol Cell Biol. 2004 Aug;5(8):626-34. (PMID: 15366706)
      PLoS One. 2009;4(4):e5253. (PMID: 19384419)
      Cell Motil Cytoskeleton. 2004 Sep;59(1):17-27. (PMID: 15259052)
      Front Physiol. 2018 Sep 11;9:1246. (PMID: 30271351)
      Science. 1999 Apr 30;284(5415):765-70. (PMID: 10221901)
      J Comput Phys. 2010 Sep 20;229(19):7287-7308. (PMID: 20689723)
      Wiley Interdiscip Rev Syst Biol Med. 2020 Dec 10;:e1514. (PMID: 33305503)
      Cell. 1996 Feb 9;84(3):359-69. (PMID: 8608589)
      Biophys J. 2021 Jul 6;120(13):2609-2622. (PMID: 34022237)
      PLoS One. 2011;6(11):e26901. (PMID: 22073217)
      Phys Rev E Stat Nonlin Soft Matter Phys. 2015;92(5):050701. (PMID: 26651631)
      Nat Cell Biol. 2013 Nov;15(11):1307-16. (PMID: 24142103)
      Sci Rep. 2013;3:2606. (PMID: 24008441)
      Phys Rev Lett. 2010 Sep 3;105(10):108104. (PMID: 20867552)
      Sci Signal. 2011 Feb 08;4(159):pe6. (PMID: 21304158)
      PLoS One. 2012;7(11):e49174. (PMID: 23139838)
      PLoS Biol. 2011 May;9(5):e1001059. (PMID: 21559321)
      J R Soc Interface. 2012 Nov 7;9(76):3027-44. (PMID: 22675164)
      J Cell Sci. 2012 Nov 1;125(Pt 21):5138-50. (PMID: 22899720)
      PLoS Comput Biol. 2020 Dec 10;16(12):e1008411. (PMID: 33301528)
      Phys Rev E. 2016 Oct;94(4-1):042423. (PMID: 27841601)
      Annu Rev Cell Dev Biol. 2005;21:695-718. (PMID: 16212512)
      PLoS Comput Biol. 2009 Jul;5(7):e1000445. (PMID: 19629173)
      Biophys J. 2006 Feb 15;90(4):1439-52. (PMID: 16326902)
      Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Sep;88(3):034702. (PMID: 24125388)
      Phys Rev E. 2017 Jan;95(1-1):012401. (PMID: 28208438)
      Curr Opin Cell Biol. 2015 Oct;36:23-31. (PMID: 26186729)
      Interface Focus. 2016 Oct 6;6(5):20160040. (PMID: 27708764)
      Front Cell Dev Biol. 2022 Sep 30;10:898351. (PMID: 36247011)
      PLoS One. 2009 Aug 31;4(8):e6842. (PMID: 19718261)
      Mol Syst Biol. 2019 Mar 11;15(3):e8585. (PMID: 30858181)
      Proc Natl Acad Sci U S A. 2012 May 1;109(18):6851-6. (PMID: 22493219)
    • Accession Number:
      0 (Actins)
    • Publication Date:
      Date Created: 20240126 Date Completed: 20240129 Latest Revision: 20241023
    • Publication Date:
      20250114
    • Accession Number:
      PMC10817190
    • Accession Number:
      10.1371/journal.pone.0297511
    • Accession Number:
      38277351