Item request has been placed!
×
Item request cannot be made.
×
Processing Request
The predictive role of symptoms in COVID-19 diagnostic models: A longitudinal insight.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Additional Information
- Source:
Publisher: Cambridge University Press Country of Publication: England NLM ID: 8703737 Publication Model: Electronic Cited Medium: Internet ISSN: 1469-4409 (Electronic) Linking ISSN: 09502688 NLM ISO Abbreviation: Epidemiol Infect Subsets: MEDLINE
- Publication Information:
Original Publication: Cambridge Eng : Cambridge University Press
- Subject Terms:
- Abstract:
To investigate the symptoms of SARS-CoV-2 infection, their dynamics and their discriminatory power for the disease using longitudinally, prospectively collected information reported at the time of their occurrence. We have analysed data from a large phase 3 clinical UK COVID-19 vaccine trial. The alpha variant was the predominant strain. Participants were assessed for SARS-CoV-2 infection via nasal/throat PCR at recruitment, vaccination appointments, and when symptomatic. Statistical techniques were implemented to infer estimates representative of the UK population, accounting for multiple symptomatic episodes associated with one individual. An optimal diagnostic model for SARS-CoV-2 infection was derived. The 4-month prevalence of SARS-CoV-2 was 2.1%; increasing to 19.4% (16.0%-22.7%) in participants reporting loss of appetite and 31.9% (27.1%-36.8%) in those with anosmia/ageusia. The model identified anosmia and/or ageusia, fever, congestion, and cough to be significantly associated with SARS-CoV-2 infection. Symptoms' dynamics were vastly different in the two groups; after a slow start peaking later and lasting longer in PCR+ participants, whilst exhibiting a consistent decline in PCR- participants, with, on average, fewer than 3 days of symptoms reported. Anosmia/ageusia peaked late in confirmed SARS-CoV-2 infection (day 12), indicating a low discrimination power for early disease diagnosis.
- References:
Nat Med. 2020 May;26(5):634-638. (PMID: 32273611)
Lancet Digit Health. 2021 Sep;3(9):e587-e598. (PMID: 34334333)
West J Emerg Med. 2021 Mar 24;22(3):592-598. (PMID: 34125032)
Qual Manag Health Care. 2023 Jan-Mar 01;32(Suppl 1):S29-S34. (PMID: 36579706)
Eur J Epidemiol. 2023 Feb;38(2):199-210. (PMID: 36680646)
Sci Rep. 2021 May 12;11(1):10124. (PMID: 33980931)
PLoS Med. 2021 Sep 28;18(9):e1003777. (PMID: 34582457)
N Engl J Med. 2021 Sep 23;385(13):1172-1183. (PMID: 34192426)
Epidemiol Infect. 2021 Feb 19;149:e54. (PMID: 33602375)
EClinicalMedicine. 2021 Mar;33:100759. (PMID: 33644720)
Ann Intern Med. 2020 May 05;172(9):577-582. (PMID: 32150748)
BMC Med. 2023 Mar 29;21(1):111. (PMID: 36978166)
Qual Manag Health Care. 2023 Jan-Mar 01;32(Suppl 1):S21-S28. (PMID: 36579705)
Front Public Health. 2020 Aug 13;8:473. (PMID: 32903584)
N Engl J Med. 2020 May 21;382(21):2049-2055. (PMID: 32202722)
Postgrad Med J. 2006 Apr;82(966):239-41. (PMID: 16597809)
Cochrane Database Syst Rev. 2021 Feb 23;2:CD013665. (PMID: 33620086)
Lancet. 2022 Apr 23;399(10335):1618-1624. (PMID: 35397851)
Science. 2020 Jun 19;368(6497):1362-1367. (PMID: 32371477)
Cochrane Database Syst Rev. 2022 May 20;5:CD013665. (PMID: 35593186)
Biostatistics. 2002 Sep;3(3):421-32. (PMID: 12933607)
Nat Microbiol. 2022 Aug;7(8):1161-1179. (PMID: 35798890)
Nat Med. 2020 Jul;26(7):1037-1040. (PMID: 32393804)
BMC Infect Dis. 2021 Oct 30;21(1):1119. (PMID: 34715802)
- Contributed Indexing:
Keywords: coronavirus; longitudinal data; symptoms dynamics
- Accession Number:
0 (COVID-19 Vaccines)
- Subject Terms:
SARS-CoV-2 variants
- Publication Date:
Date Created: 20240122 Date Completed: 20240306 Latest Revision: 20240320
- Publication Date:
20240320
- Accession Number:
PMC10945957
- Accession Number:
10.1017/S0950268824000037
- Accession Number:
38250791
No Comments.