Abstract: A dopamine reuptake inhibitor is a type of medication or substance that works by blocking the reuptake of dopamine in the brain. Dopamine reuptake inhibitors offer multiple effects, including increased alertness, improved mood, and therapeutic potential for conditions like depression, ADHD, and Parkinson's disease. HDMP-28, or methylnaphthidate, is a potent synthetic stimulant from the phenyltropane class. It surpasses methylphenidate in both dopamine reuptake inhibition and half-life. As a dopamine reuptake inhibitor, it boosts dopamine levels by hindering reuptake into nerve cells, resulting in heightened stimulation and increased energy. In order to comprehensively address both the tangible and potential repercussions of the unauthorized utilization of the aforementioned substance in sports, it is imperative to establish analytical methodologies for the identification of the parent drug and its primary metabolites. Additionally, a comprehensive analysis of the metabolic characteristics of HDMP-28 in both human and animal subjects has yet to be published. This study explores the metabolic conversion of HDMP-28 mediated by equine liver microsomes and Cunninghamella elegans. An extraction and detection method was developed, optimized, and validated for doping assessment in equine urine and plasma. Liquid chromatography-high-resolution mass spectrometry was employed to determine metabolite structures. The study identified 31 (22 phase I and 9 phase II) metabolites of HDMP-28, including hydroxylated, hydrogenated, and hydrolyzed analogs. Glucuronic acid-conjugated metabolites were also detected. This manuscript describes metabolites based on the in vitro studies, which might not be the same in vivo. These findings aid in the detection and understanding of the illicit use of HDMP-28 in equestrian sports.
(© 2024 John Wiley & Sons Ltd.)
References: Rothman RB, Baumann MH, Dersch CM, et al. Amphetamine‐type central nervous system stimulants release norepinephrine more potently than they release dopamine and serotonin. Synapse. 2001;39(1):32‐41. doi:10.1002/1098‐2396(20010101)39:1<32::AID‐SYN5>3.0.CO;2‐3.
Carboni E, Silvagni A. Dopamine reuptake by norepinephrine neurons: exception or rule? Crit Rev Neurobiol. 2004;16(1–2):121‐128. doi:10.1615/CritRevNeurobiol.v16.i12.130.
Volkow ND, Wang GJ, Fowler JS, et al. Dopamine transporter occupancies in the human brain induced by therapeutic doses of oral methylphenidate. Am J Psychiatry. 1998;155(10):1325‐1331. doi:10.1176/ajp.155.10.1325.
Song R, Hai‐Ying Z, Li X, Bi G‐H, Gardner EL, Xi Z‐X. Increased vulnerability to cocaine in mice lacking dopamine D3 receptors. Neuroscience. 2012;109(43):17675‐17680.
Heal DJ, Gosden J, Smith SL. Dopamine reuptake transporter (DAT) “inverse agonism”—a novel hypothesis to explain the enigmatic pharmacology of cocaine. Neuropharmacology. 2014;87:19‐40. doi:10.1016/j.neuropharm.2014.06.012.
Loland CJ, Mereu M, Okunola OM, et al. R‐modafinil (armodafinil): a unique dopamine uptake inhibitor and potential medication for psychostimulant abuse. Biol Psychiatry. 2012;72(5):405‐413. doi:10.1016/j.biopsych.2012.03.022.
Madras BK. History of the discovery of the antipsychotic dopamine D2 receptor: a basis for the dopamine hypothesis of schizophrenia. J Hist Neurosci. 2013;22(1):62‐78. doi:10.1080/0964704X.2012.678199.
Carroll FI, Howard JL, Howell LL, Fox BS, Kuhar MJ. Development of the dopamine transporter selective RTI‐336 as a pharmacotherapy for cocaine abuse. AAPS J. 2006;8(1):E196‐E203. doi:10.1208/aapsj080124.
Kintscher U. Reuptake inhibitors of dopamine, noradrenaline, and serotonin. Handb Exp Pharmacol. 2012;209:339‐347. doi:10.1007/978‐3‐642‐24716‐3_15.
Ashok AH, Mizuno Y, Volkow ND, Howes OD. Association of stimulant use with dopaminergic alterations in users of cocaine, amphetamine, or methamphetamine: a systematic review and meta‐analysis. JAMA Psychiatry. 2017;74(5):511‐519. doi:10.1001/jamapsychiatry.2017.0135.
Matecka D, Rothman RB, Radesca L, et al. Development of novel, potent, and selective dopamine reuptake inhibitors through alteration of the piperazine ring of 1‐[2‐(diphenylmethoxy)ethyl] and 1‐[2‐[bis(4‐fluorophenyl)methoxy]ethyl]‐4‐(3‐phenylpropyl)piperazines (GBR 12935 and GBR 12909). J Med Chem. 1996;39(24):4704‐4716. doi:10.1021/jm960305h.
Schmeichel BE, Zemlan FP, Berridge CW. A selective dopamine reuptake inhibitor improves prefrontal cortex‐dependent cognitive function: potential relevance to attention deficit hyperactivity disorder. Neuropharmacology. 2013;64(1):321‐328. doi:10.1016/j.neuropharm.2012.07.005.
Schreiber R, Campbell U, Quinton MS, Hardy LW, Fang QK, Lew R. In vitro and in vivo pharmacological characterization of dasotraline, a dual dopamine and norepinephrine transporter inhibitor in vivo. Biomed Pharmacother. 2022;153:113359. doi:10.1016/j.biopha.2022.113359.
Davies HM, Hopper DW, Hansen T, Liu Q, Childers SR. Synthesis of methylphenidate analogues and their binding affinities at dopamine and serotonin transport sites. Bioorg Med Chem Lett. 2004;14(7):1799‐1802. doi:10.1016/j.bmcl.2003.12.097.
Volkow ND, Swanson JM. Variables that affect the clinical use and abuse of methylphenidate in the treatment of ADHD. Am J Psychiatry. 2003;160(11):1909‐1918. doi:10.1176/appi.ajp.160.11.1909.
Dinis‐Oliveira RJ. Metabolomics of methylphenidate and ethylphenidate: implications in pharmacological and toxicological effects. Eur J Drug Metab Pharmacokinet. 2017;42(1):11‐16. doi:10.1007/s13318‐016‐0362‐1.
Lile JA, Wang Z, Woolverton WL, et al. The reinforcing efficacy of psychostimulants in rhesus monkeys: the role of pharmacokinetics and pharmacodynamics. J Pharmacol Exp Ther. 2003;307(1):356‐366. doi:10.1124/jpet.103.049825.
Schweri MM, Deutsch HM, Massey AT, Holtzman SG. Biochemical and behavioral characterization of novel methylphenidate analogs. J Pharmacol Exp Ther. 2002;301(2):527‐535. doi:10.1124/jpet.301.2.527.
Deutsch HM, Ye X, Shi Q, Liu Z, Schweri MM. Synthesis and pharmacology of site specific cocaine abuse treatment agents: a new synthetic methodology for methylphenidate analogs based on the Blaise reaction. Eur J Med Chem. 2001;36(4):303‐311. doi:10.1016/S0223‐5234(01)01230‐2.
Negreira N, Erratico C, van Nuijs AL, Covaci A. Identification of in vitro metabolites of ethylphenidate by liquid chromatography coupled to quadrupole time‐of‐flight mass spectrometry. J Pharm Biomed Anal. 2016;117:474‐484. doi:10.1016/j.jpba.2015.09.029.
Karatt TK, Sathiq MA, Laya S, Philip M, Karakka Kal AK, Subhahar MB. Investigation of in vitro generated metabolites of GLPG0492 using equine liver microsomes for doping control. Drug Test Anal. 2023;15(6):1‐24. doi:10.1002/dta.3453.
Philip M, Mathew B, Tajudheen KK, Zubair P, Subhahar MB, Abdul KKK. Metabolic studies of HIF stabilizers IOX2, IOX3, and IOX4 (in vitro) for doping control. Drug Test Anal. 2021;13(4):794‐816. doi:10.1002/dta.3000.
Watanabe S, Iwai T, Matsushita R, et al. Comparison between human liver microsomes and the fungus Cunninghamella elegans for biotransformation of the synthetic cannabinoid JWH‐424 having a bromo‐naphthyl moiety analysed by high‐resolution mass spectrometry. Forensic Toxicol. 2022;40(2):278‐288. doi:10.1007/s11419‐022‐00612‐2.
Karakka Kal AK, Karatt TK, Nalakath J, et al. Simultaneous analysis of 44 frequently abused corticosteroid drugs using polysaccharide‐based chiral column‐HRMS approach. Anal Sci Adv. 2021;2(9‐10):427‐439. doi:10.1002/ansa.202000166.
Ventura E, Gadaj A, Buckley T, Mooney MH. Development of a multi‐residue high‐throughput UHPLC‐MS/MS method for routine monitoring of SARM compounds in equine and bovine blood. Drug Test Anal. 2020;12(9):1373‐1379. doi:10.1002/dta.2875.
Karatt TK, Muhammed Ajeebsanu MP, Kal AKK, Subhahar MB, Sathiq MA, Laya S. Electrospray ionisation mass spectrometry (ESI‐MS) adduct formation by mobile phase additives: a case study using nitrile functional groups containing selective androgen receptor modulators (SARMs). Rapid Commun Mass Spectrom. 2023;37(14):e9530. doi:10.1002/rcm.9530.
No Comments.