Phytochemicals as Potential Lead Molecules against Hepatocellular Carcinoma.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Bentham Science Publishers Country of Publication: United Arab Emirates NLM ID: 9440157 Publication Model: Print Cited Medium: Internet ISSN: 1875-533X (Electronic) Linking ISSN: 09298673 NLM ISO Abbreviation: Curr Med Chem Subsets: MEDLINE
    • Publication Information:
      Publication: Saif Zone, Sharjah, U.A.E. : Bentham Science Publishers
      Original Publication: Schiphol, The Netherlands : Bentham Science Publishers,
    • Subject Terms:
    • Abstract:
      Hepatocellular carcinoma (HCC) is the most prevalent form of liver cancer, accounting for 85-90% of liver cancer cases and is a leading cause of cancer-related mortality worldwide. The major risk factors for HCC include hepatitis C and B viral infections, along with chronic liver diseases, such as cirrhosis, fibrosis, and non-alcoholic steatohepatitis associated with metabolic syndrome. Despite the advancements in modern medicine, there is a continuous rise in the annual global incidence rate of HCC, and it is estimated to reach >1 million cases by 2025. Emerging research in phytomedicine and chemotherapy has established the anti-cancer potential of phytochemicals, owing to their diverse biological activities. In this review, we report the major phytochemicals that have been explored in combating hepatocellular carcinoma and possess great potential to be used as an alternative or in conjunction with the existing HCC treatment modalities. An overview of the pre-clinical observations, mechanism of action and molecular targets of some of these phytochemicals is also incorporated.
      (Copyright© Bentham Science Publishers; For any queries, please email at [email protected].)
    • References:
      Sung H.; Ferlay J.; Siegel R.L.; Laversanne M.; Soerjomataram I.; Jemal A.; Bray F.; Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 2021,71(3),209-249. (PMID: 10.3322/caac.2166033538338)
      Seo D.Y.; Lee S.R.; Heo J.W.; No M.H.; Rhee B.D.; Ko K.S.; Kwak H.B.; Han J.; Ursolic acid in health and disease. Korean J Physiol Pharmacol 2018,22(3),235-248. (PMID: 10.4196/kjpp.2018.22.3.23529719446)
      Craig A.J.; von Felden J.; Garcia-Lezana T.; Sarcognato S.; Villanueva A.; Tumour evolution in hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol 2020,17(3),139-152. (PMID: 10.1038/s41575-019-0229-431792430)
      Ahmed O.; Liu L.; Gayed A.; Baadh A.; Patel M.; Tasse J.; Turba U.; Arslan B.; The changing face of hepatocellular carcinoma: Forecasting prevalence of nonalcoholic steatohepatitis and hepatitis C cirrhosis. J Clin Exp Hepatol 2019,9(1),50-55. (PMID: 10.1016/j.jceh.2018.02.00630765939)
      Reig M.; Forner A.; Rimola J.; Ferrer-Fàbrega J.; Burrel M.; Garcia-Criado Á.; Kelley R.K.; Galle P.R.; Mazzaferro V.; Salem R.; Sangro B.; Singal A.G.; Vogel A.; Fuster J.; Ayuso C.; Bruix J.; BCLC strategy for prognosis prediction and treatment recommendation: The 2022 update. J Hepatol 2022,76(3),681-693. (PMID: 10.1016/j.jhep.2021.11.01834801630)
      Toh M.R.; Wong E.Y.T.; Wong S.H.; Ng A.W.T.; Loo L.H.; Chow P.K.H.; Ngeow J.; Global epidemiology and genetics of hepatocellular carcinoma. Gastroenterology 2023,164(5),766-782. (PMID: 10.1053/j.gastro.2023.01.03336738977)
      Ogunwobi O.O.; Harricharran T.; Huaman J.; Galuza A.; Odumuwagun O.; Tan Y.; Ma G.X.; Nguyen M.T.; Mechanisms of hepatocellular carcinoma progression. World J Gastroenterol 2019,25(19),2279-2293. (PMID: 10.3748/wjg.v25.i19.227931148900)
      Tarocchi M.; Polvani S.; Marroncini G.; Galli A.; Molecular mechanism of hepatitis B virus-induced hepatocarcinogenesis. World J Gastroenterol 2014,20(33),11630-11640. (PMID: 10.3748/wjg.v20.i33.1163025206269)
      Ramakrishna G.; Rastogi A.; Trehanpati N.; Sen B.; Khosla R.; Sarin S.K.; From cirrhosis to hepatocellular carcinoma: New molecular insights on inflammation and cellular senescence. Liver Cancer 2013,2(3-4),367-383. (PMID: 10.1159/00034385224400224)
      Bartosch B.; Thimme R.; Blum H.E.; Zoulim F.; Hepatitis C virus-induced hepatocarcinogenesis. J Hepatol 2009,51(4),810-820. (PMID: 10.1016/j.jhep.2009.05.00819545926)
      Shampay J.; Szostak J.W.; Blackburn E.H.; DNA sequences of telomeres maintained in yeast. Nature 1984,310(5973),154-157. (PMID: 10.1038/310154a06330571)
      Jafri M.A.; Ansari S.A.; Alqahtani M.H.; Shay J.W.; Roles of telomeres and telomerase in cancer, and advances in telomerase-targeted therapies. Genome Med 2016,8(1),69. (PMID: 10.1186/s13073-016-0324-x27323951)
      Mangnall D.; Bird N.C.; Majeed A.W.; The molecular physiology of liver regeneration following partial hepatectomy. Liver Int 2003,23(2),124-138. (PMID: 10.1034/j.1600-0676.2003.00812.x12654135)
      Hoare M.; Das T.; Alexander G.; Ageing, telomeres, senescence, and liver injury. J Hepatol 2010,53(5),950-961. (PMID: 10.1016/j.jhep.2010.06.00920739078)
      Schulze K.; Imbeaud S.; Letouzé E.; Alexandrov L.B.; Calderaro J.; Rebouissou S.; Couchy G.; Meiller C.; Shinde J.; Soysouvanh F.; Calatayud A.L.; Pinyol R.; Pelletier L.; Balabaud C.; Laurent A.; Blanc J.F.; Mazzaferro V.; Calvo F.; Villanueva A.; Nault J.C.; Bioulac-Sage P.; Stratton M.R.; Llovet J.M.; Zucman-Rossi J.; Exome sequencing of hepatocellular carcinomas identifies new mutational signatures and potential therapeutic targets. Nat Genet 2015,47(5),505-511. (PMID: 10.1038/ng.325225822088)
      Nault J.C.; Datta S.; Imbeaud S.; Franconi A.; Mallet M.; Couchy G.; Letouzé E.; Pilati C.; Verret B.; Blanc J.F.; Balabaud C.; Calderaro J.; Laurent A.; Letexier M.; Bioulac-Sage P.; Calvo F.; Zucman-Rossi J.; Recurrent AAV2-related insertional mutagenesis in human hepatocellular carcinomas. Nat Genet 2015,47(10),1187-1193. (PMID: 10.1038/ng.338926301494)
      La Bella T.; Imbeaud S.; Peneau C.; Mami I.; Datta S.; Bayard Q.; Caruso S.; Hirsch T.Z.; Calderaro J.; Morcrette G.; Guettier C.; Paradis V.; Amaddeo G.; Laurent A.; Possenti L.; Chiche L.; Bioulac-Sage P.; Blanc J.F.; Letouze E.; Nault J.C.; Zucman-Rossi J.; Adeno-associated virus in the liver: Natural history and consequences in tumour development. Gut 2020,69(4),737-747. (PMID: 10.1136/gutjnl-2019-31828131375600)
      Ningarhari M.; Caruso S.; Hirsch T.Z.; Bayard Q.; Franconi A.; Védie A.L.; Noblet B.; Blanc J.F.; Amaddeo G.; Ganne N.; Ziol M.; Paradis V.; Guettier C.; Calderaro J.; Morcrette G.; Kim Y.; MacLeod A.R.; Nault J.C.; Rebouissou S.; Zucman-Rossi J.; Telomere length is key to hepatocellular carcinoma diversity and telomerase addiction is an actionable therapeutic target. J Hepatol 2021,74(5),1155-1166. (PMID: 10.1016/j.jhep.2020.11.05233338512)
      Zhang C.; Li J.; Huang T.; Duan S.; Dai D.; Jiang D.; Sui X.; Li D.; Chen Y.; Ding F.; Huang C.; Chen G.; Wang K.; Meta-analysis of DNA methylation biomarkers in hepatocellular carcinoma. Oncotarget 2016,7(49),81255-81267. (PMID: 10.18632/oncotarget.1322127835605)
      Xu G.; Zhou X.; Xing J.; Xiao Y.; Jin B.; Sun L.; Yang H.; Du S.; Xu H.; Mao Y.; Identification of RASSF1A promoter hypermethylation as a biomarker for hepatocellular carcinoma. Cancer Cell Int 2020,20(1),547. (PMID: 10.1186/s12935-020-01638-533292241)
      Liu M.; Cui L.H.; Li C.C.; Zhang L.; Association of APC, GSTP1 and SOCS1 promoter methylation with the risk of hepatocellular carcinoma. Eur J Cancer Prev 2015,24(6),470-483. (PMID: 10.1097/CEJ.000000000000012125853848)
      Villanueva A.; Portela A.; Sayols S.; Battiston C.; Hoshida Y.; Méndez-González J.; Imbeaud S.; Letouzé E.; Hernandez-Gea V.; Cornella H.; Pinyol R.; Solé M.; Fuster J.; Zucman-Rossi J.; Mazzaferro V.; Esteller M.; Llovet J.M.; DNA methylation-based prognosis and epidrivers in hepatocellular carcinoma. Hepatology 2015,61(6),1945-1956. (PMID: 10.1002/hep.2773225645722)
      Li Y.; Chen X.; Lu C.; The interplay between DNA and histone methylation: Molecular mechanisms and disease implications. EMBO Rep 2021,22(5),e51803. (PMID: 10.15252/embr.20205180333844406)
      Tang B.; Tang F.; Li B.; Yuan S.; Xu Q.; Tomlinson S.; Jin J.; Hu W.; He S.; High USP22 expression indicates poor prognosis in hepatocellular carcinoma. Oncotarget 2015,6(14),12654-12667. (PMID: 10.18632/oncotarget.370525909224)
      Ling S.; Li J.; Shan Q.; Dai H.; Lu D.; Wen X.; Song P.; Xie H.; Zhou L.; Liu J.; Xu X.; Zheng S.; USP22 mediates the multidrug resistance of hepatocellular carcinoma via the SIRT1/AKT/MRP1 signaling pathway. Mol Oncol 2017,11(6),682-695. (PMID: 10.1002/1878-0261.1206728417539)
      Zhang J.; Luo N.; Tian Y.; Li J.; Yang X.; Yin H.; Xiao C.; Sheng J.; Li Y.; Tang B.; Li R.; USP22 knockdown enhanced chemosensitivity of hepatocellular carcinoma cells to 5-Fu by up-regulation of Smad4 and suppression of Akt. Oncotarget 2017,8(15),24728-24740. (PMID: 10.18632/oncotarget.1579828445968)
      Shen Z.T.; Chen Y.; Huang G-C.; Zhu X-X.; Wang R.; Chen L-B.; Aurora-a confers radioresistance in human hepatocellular carcinoma by activating NF-κB signaling pathway. BMC Cancer 2019,19(1),1075. (PMID: 10.1186/s12885-019-6312-y30606139)
      Lin Z.Z.; Jeng Y.M.; Hu F.C.; Pan H.W.; Tsao H.W.; Lai P.L.; Lee P.H.; Cheng A.L.; Hsu H.C.; Significance of Aurora B overexpression in hepatocellular carcinoma. Aurora B Overexpression in HCC. BMC Cancer 2010,10(1),461. (PMID: 10.1186/1471-2407-10-46120799978)
      Gailhouste L.; Liew L.C.; Yasukawa K.; Hatada I.; Tanaka Y.; Nakagama H.; Ochiya T.; Differentiation therapy by epigenetic reconditioning exerts antitumor effects on liver cancer cells. Mol Ther 2018,26(7),1840-1854. (PMID: 10.1016/j.ymthe.2018.04.01829759938)
      Liu M.; Zhang L.; Li H.; Hinoue T.; Zhou W.; Ohtani H.; El-Khoueiry A.; Daniels J.; O’Connell C.; Dorff T.B.; Lu Q.; Weisenberger D.J.; Liang G.; Integrative epigenetic analysis reveals therapeutic targets to the DNA methyltransferase inhibitor guadecitabine (SGI-110) in hepatocellular carcinoma. Hepatology 2018,68(4),1412-1428. (PMID: 10.1002/hep.3009129774579)
      Alqahtani A.; Khan Z.; Alloghbi A.; Said Ahmed T.S.; Ashraf M.; Hammouda D.M.; Hepatocellular carcinoma: Molecular mechanisms and targeted therapies. Medicina 2019,55(9),526. (PMID: 10.3390/medicina5509052631450841)
      Farzaneh Z.; Vosough M.; Agarwal T.; Farzaneh M.; Critical signaling pathways governing hepatocellular carcinoma behavior: Small molecule-based approaches. Cancer Cell Int 2021,21(1),208. (PMID: 10.1186/s12935-021-01924-w33849569)
      Ho D.W.H.; Lo R.C.L.; Chan L.K.; Ng I.O.L.; Molecular pathogenesis of hepatocellular carcinoma. Liver Cancer 2016,5(4),290-302. (PMID: 10.1159/00044934027781201)
      Mekuria A.; Abdi A.; Potential molecular targets and drugs for treatment of hepatocellular carcinoma. J Cancer Sci Ther 2017,9,12.
      Morse M.A.; Sun W.; Kim R.; He A.R.; Abada P.B.; Mynderse M.; Finn R.S.; The role of angiogenesis in hepatocellular carcinoma. Clin Cancer Res 2019,25(3),912-920. (PMID: 10.1158/1078-0432.CCR-18-125430274981)
      Bais C.; Comprehensive reassessment of plasma VEGFA (pVEGFA) as a candidate predictive biomarker for bevacizumab (Bv) in 13 pivotal trials (seven indications) 2014. (PMID: 10.1200/jco.2014.32.15_suppl.3040)
      Whittaker S.; Marais R.; Zhu A.X.; The role of signaling pathways in the development and treatment of hepatocellular carcinoma. Oncogene 2010,29(36),4989-5005. (PMID: 10.1038/onc.2010.23620639898)
      Fruman D.A.; Rommel C.; PI3K and cancer: Lessons, challenges and opportunities. Nat Rev Drug Discov 2014,13(2),140-156. (PMID: 10.1038/nrd420424481312)
      Khan K.H.; Yap T.A.; Yan L.; Cunningham D.; Targeting the PI3K-AKT-mTOR signaling network in cancer. Chin J Cancer 2013,32(5),253-265. (PMID: 10.5732/cjc.013.1005723642907)
      Fruman D.A.; Chiu H.; Hopkins B.D.; Bagrodia S.; Cantley L.C.; Abraham R.T.; The PI3K pathway in human disease. Cell 2017,170(4),605-635. (PMID: 10.1016/j.cell.2017.07.02928802037)
      Wang L.; Wang W.L.; Zhang Y.; Guo S.P.; Zhang J.; Li Q.L.; Epigenetic and genetic alterations of PTEN in hepatocellular carcinoma. Hepatol Res 2007,37(5),389-396. (PMID: 10.1111/j.1872-034X.2007.00042.x17441812)
      Zhu Y.; Zheng B.; Wang H.; Chen L.; New knowledge of the mechanisms of sorafenib resistance in liver cancer. Acta Pharmacol Sin 2017,38(5),614-622. (PMID: 10.1038/aps.2017.528344323)
      Sun E.J.; Wankell M.; Palamuthusingam P.; McFarlane C.; Hebbard L.; Targeting the PI3K/Akt/mTOR pathway in hepatocellular carcinoma. Biomedicines 2021,9(11),1639. (PMID: 10.3390/biomedicines911163934829868)
      Tian L.Y.; Smit D.J.; Jücker M.; The role of PI3K/AKT/mTOR signaling in hepatocellular carcinoma metabolism. Int J Mol Sci 2023,24(3),2652. (PMID: 10.3390/ijms2403265236768977)
      Wang Z.; Sheng Y.Y.; Gao X.M.; Wang C.Q.; Wang X.Y.; Lu X.; Wei J.W.; Zhang K.L.; Dong Q.Z.; Qin L.X.; β-catenin mutation is correlated with a favorable prognosis in patients with hepatocellular carcinoma. Mol Clin Oncol 2015,3(4),936-940. (PMID: 10.3892/mco.2015.56926171210)
      Peng S.Y.; Chen W.J.; Lai P.L.; Jeng Y.M.; Sheu J.C.; Hsu H.C.; High α-fetoprotein level correlates with high stage, early recurrence and poor prognosis of hepatocellular carcinoma: Significance of hepatitis virus infection, age, p53 and β-catenin mutations. Int J Cancer 2004,112(1),44-50. (PMID: 10.1002/ijc.2027915305374)
      Waisberg J.; Saba G.T.; Wnt-/-β-catenin pathway signaling in human hepatocellular carcinoma. World J Hepatol 2015,7(26),2631-2635. (PMID: 10.4254/wjh.v7.i26.263126609340)
      Khalaf A.M.; Fuentes D.; Morshid A.I.; Burke M.R.; Kaseb A.O.; Hassan M.; Hazle J.D.; Elsayes K.M.; Role of Wnt/β-catenin signaling in hepatocellular carcinoma, pathogenesis, and clinical significance. J Hepatocell Carcinoma 2018,5,61-73. (PMID: 10.2147/JHC.S15670129984212)
      Bugter J.M.; Fenderico N.; Maurice M.M.; Mutations and mechanisms of WNT pathway tumour suppressors in cancer. Nat Rev Cancer 2021,21(1),5-21. (PMID: 10.1038/s41568-020-00307-z33097916)
      Xu C.; Xu Z.; Zhang Y.; Evert M.; Calvisi D.F.; Chen X.; β-Catenin signaling in hepatocellular carcinoma. J Clin Invest 2022,132(4),e154515. (PMID: 10.1172/JCI15451535166233)
      Qu B.; Liu B.R.; Du Y.J.; Chen J.; Cheng Y.Q.; Xu W.; Wang X.H.; Wnt/β-catenin signaling pathway may regulate the expression of angiogenic growth factors in hepatocellular carcinoma. Oncol Lett 2014,7(4),1175-1178. (PMID: 10.3892/ol.2014.182824944688)
      Lo R.C.L.; Leung C.O.N.; Chan K.K.S.; Ho D.W.H.; Wong C.M.; Lee T.K.W.; Ng I.O.L.; Cripto-1 contributes to stemness in hepatocellular carcinoma by stabilizing Dishevelled-3 and activating Wnt/β-catenin pathway. Cell Death Differ 2018,25(8),1426-1441. (PMID: 10.1038/s41418-018-0059-x29445127)
      Leung H.W.; Leung C.O.N.; Lau E.Y.; Chung K.P.S.; Mok E.H.; Lei M.M.L.; Leung R.W.H.; Tong M.; Keng V.W.; Ma C.; Zhao Q.; Ng I.O.L.; Ma S.; Lee T.K.; EPHB2 activates β-catenin to enhance cancer stem cell properties and drive sorafenib resistance in hepatocellular carcinoma. Cancer Res 2021,81(12),3229-3240. (PMID: 10.1158/0008-5472.CAN-21-018433903122)
      Karabicici M.; Azbazdar Y.; Ozhan G.; Senturk S.; Firtina Karagonlar Z.; Erdal E.; Changes in Wnt and TGF-β signaling mediate the development of regorafenib resistance in hepatocellular carcinoma cell line HuH7. Front Cell Dev Biol 2021,9,639779. (PMID: 10.3389/fcell.2021.63977934458250)
      Arensman M.D.; Telesca D.; Lay A.R.; Kershaw K.M.; Wu N.; Donahue T.R.; Dawson D.W.; The CREB-binding protein inhibitor ICG-001 suppresses pancreatic cancer growth. Mol Cancer Ther 2014,13(10),2303-2314. (PMID: 10.1158/1535-7163.MCT-13-100525082960)
      Emami K.H.; Nguyen C.; Ma H.; Kim D.H.; Jeong K.W.; Eguchi M.; Moon R.T.; Teo J-L.; Oh S.W.; Kim H.Y.; Moon S.H.; Ha J.R.; Kahn M.; A small molecule inhibitor of β-catenin/cyclic AMP response element-binding protein transcription. Proc Natl Acad Sci USA 2004,101(34),12682-12687. (PMID: 10.1073/pnas.040487510115314234)
      Dihlmann S.; Klein S.; Doeberitz Mv Mv.; Reduction of β-catenin/T-cell transcription factor signaling by aspirin and indomethacin is caused by an increased stabilization of phosphorylated β-catenin. Mol Cancer Ther 2003,2(6),509-516. (PMID: 12813129)
      Thorne C.A.; Hanson A.J.; Schneider J.; Tahinci E.; Orton D.; Cselenyi C.S.; Jernigan K.K.; Meyers K.C.; Hang B.I.; Waterson A.G.; Kim K.; Melancon B.; Ghidu V.P.; Sulikowski G.A.; LaFleur B.; Salic A.; Lee L.A.; Miller D.M.; Lee E.; Small-molecule inhibition of Wnt signaling through activation of casein kinase 1α. Nat Chem Biol 2010,6(11),829-836. (PMID: 10.1038/nchembio.45320890287)
      Boon E.M.J.; Keller J.J.; Wormhoudt T A M.; Giardiello F.M.; Offerhaus G.J.A.; van der Neut R.; Pals S.T.; Sulindac targets nuclear β-catenin accumulation and Wnt signalling in adenomas of patients with familial adenomatous polyposis and in human colorectal cancer cell lines. Br J Cancer 2004,90(1),224-229. (PMID: 10.1038/sj.bjc.660150514710233)
      Gedaly R.; Galuppo R.; Daily M.F.; Shah M.; Maynard E.; Chen C.; Zhang X.; Esser K.A.; Cohen D.A.; Evers B.M.; Jiang J.; Spear B.T.; Targeting the Wnt/β-catenin signaling pathway in liver cancer stem cells and hepatocellular carcinoma cell lines with FH535. PLoS One 2014,9(6),e99272. (PMID: 10.1371/journal.pone.009927224940873)
      Wei W.; Chua M.S.; Grepper S.; So S.; Small molecule antagonists of Tcf4/β-catenin complex inhibit the growth of HCC cells in vitro and in vivo. Int J Cancer 2010,126(10),2426-2436. (PMID: 10.1002/ijc.2481019662654)
      Yamada Y.; Yoshimi N.; Hirose Y.; Hara A.; Shimizu M.; Kuno T.; Katayama M.; Qiao Z.; Mori H.; Suppression of occurrence and advancement of β-catenin-accumulated crypts, possible premalignant lesions of colon cancer, by selective cyclooxygenase-2 inhibitor, celecoxib. Jpn J Cancer Res 2001,92(6),617-623. (PMID: 10.1111/j.1349-7006.2001.tb01139.x11429049)
      Byers S.; 9 TGF-p, Notch, and Wnt in normal and malignant stem cells: Differentiating agents and epigenetic modulation 2009,139.
      Zheng X.; Zeng W.; Gai X.; Xu Q.; Li C.; Liang Z.; Tuo H.; Liu Q.; Role of the Hedgehog pathway in hepatocellular carcinoma (Review). Oncol Rep 2013,30(5),2020-2026. (PMID: 10.3892/or.2013.269023970376)
      Philips G.M.; Chan I.S.; Swiderska M.; Schroder V.T.; Guy C.; Karaca G.F.; Moylan C.; Venkatraman T.; Feuerlein S.; Syn W.K.; Jung Y.; Witek R.P.; Choi S.; Michelotti G.A.; Rangwala F.; Merkle E.; Lascola C.; Diehl A.M.; Hedgehog signaling antagonist promotes regression of both liver fibrosis and hepatocellular carcinoma in a murine model of primary liver cancer. PLoS One 2011,6(9),e23943. (PMID: 10.1371/journal.pone.002394321912653)
      Verdelho Machado M.; Diehl A.M.; The hedgehog pathway in nonalcoholic fatty liver disease. Crit Rev Biochem Mol Biol 2018,53(3),264-278. (PMID: 10.1080/10409238.2018.144875229557675)
      Cheng W-T.; Xu K.; Tian D.Y.; Zhang Z.G.; Liu L.J.; Chen Y.; Role of Hedgehog signaling pathway in proliferation and invasiveness of hepatocellular carcinoma cells. Int J Oncol 2009,34(3),829-836. (PMID: 19212688)
      Chan I.S.; Guy C.D.; Machado M.V.; Wank A.; Kadiyala V.; Michelotti G.; Choi S.; Swiderska-Syn M.; Karaca G.; Pereira T.A.; Yip-Schneider M.T.; Max Schmidt C.; Diehl A.M.; Alcohol activates the hedgehog pathway and induces related procarcinogenic processes in the alcohol-preferring rat model of hepatocarcinogenesis. Alcohol Clin Exp Res 2014,38(3),787-800. (PMID: 10.1111/acer.1227924164383)
      Huang X.B.; Li J.; Zheng L.; Zuo G.H.; Han K.Q.; Li H.Y.; Liang P.; Bioinformatics analysis reveals potential candidate drugs for HCC. Pathol Oncol Res 2013,19(2),251-258. (PMID: 10.1007/s12253-012-9576-y23341104)
      Liu Z.; Liu X.; Liang J.; Liu Y.; Hou X.; Zhang M.; Li Y.; Jiang X.; Immunotherapy for hepatocellular carcinoma: Current status and future prospects. Front Immunol 2021,12,765101-765101. (PMID: 10.3389/fimmu.2021.76510134675942)
      Mandlik D.S.; Mandlik S.K.; Choudhary H.B.; Immunotherapy for hepatocellular carcinoma: Current status and future perspectives. World J Gastroenterol 2023,29(6),1054-1075. (PMID: 10.3748/wjg.v29.i6.105436844141)
      Li J.; Xuan S.; Dong P.; Xiang Z.; Gao C.; Li M.; Huang L.; Wu J.; Immunotherapy of hepatocellular carcinoma: Recent progress and new strategy. Front Immunol 2023,14,1192506. (PMID: 10.3389/fimmu.2023.119250637234162)
      Guven D.C.; Sahin T.K.; Rizzo A.; Ricci A.D.; Aksoy S.; Sahin K.; The use of phytochemicals to improve the efficacy of immune checkpoint inhibitors: Opportunities and challenges. Appl Sci 2022,12(20),10548. (PMID: 10.3390/app122010548)
      Lee J.; Han Y.; Wang W.; Jo H.; Kim H.; Kim S.; Yang K.M.; Kim S.J.; Dhanasekaran D.N.; Song Y.S.; Phytochemicals in cancer immune checkpoint inhibitor therapy. Biomolecules 2021,11(8),1107. (PMID: 10.3390/biom1108110734439774)
      Singh S.; Medicinal plants and phytochemicals in prevention and management of life style disorders: Pharmacological studies and challenges. Asian J Pharm Clin Res 2021,14(12),1-6.
      Costa A.G.V.; Garcia-Diaz D.F.; Jimenez P.; Silva P.I.; Bioactive compounds and health benefits of exotic tropical red–black berries. J Funct Foods 2013,5(2),539-549. (PMID: 10.1016/j.jff.2013.01.029)
      Prahalathan P.; Saravanakumar M.; Raja B.; The flavonoid morin restores blood pressure and lipid metabolism in DOCA-salt hypertensive rats. Redox Rep 2012,17(4),167-175. (PMID: 10.1179/1351000212Y.000000001522781105)
      Chan J.Y.Y.; Yuen A.C.Y.; Chan R.Y.K.; Chan S.W.; A review of the cardiovascular benefits and antioxidant properties of allicin. Phytother Res 2013,27(5),637-646. (PMID: 10.1002/ptr.479622888009)
      Dong J.; Zhang X.; Zhang L.; Bian H.X.; Xu N.; Bao B.; Liu J.; Quercetin reduces obesity-associated ATM infiltration and inflammation in mice: A mechanism including AMPKα1/SIRT1. J Lipid Res 2014,55(3),363-374. (PMID: 10.1194/jlr.M03878624465016)
      Anto R.J.; Mukhopadhyay A.; Denning K.; Aggarwal B.B.; Curcumin (diferuloylmethane) induces apoptosis through activation of caspase-8, BID cleavage and cytochrome c release: Its suppression by ectopic expression of Bcl-2 and Bcl-xl. Carcinogenesis 2002,23(1),143-150. (PMID: 10.1093/carcin/23.1.14311756235)
      Vinod B.S.; Maliekal T.T.; Anto R.J.; Phytochemicals as chemosensitizers: From molecular mechanism to clinical significance. Antioxid Redox Signal 2013,18(11),1307-1348. (PMID: 10.1089/ars.2012.457322871022)
      Kunnumakkara A.B.; Bordoloi D.; Harsha C.; Banik K.; Gupta S.C.; Aggarwal B.B.; Curcumin mediates anticancer effects by modulating multiple cell signaling pathways. Clin Sci 2017,131(15),1781-1799. (PMID: 10.1042/CS2016093528679846)
      Puliyappadamba V.T.; Thulasidasan A.K.T.; Vijayakurup V.; Antony J.; Bava S.V.; Anwar S.; Sundaram S.; Anto R.J.; Curcumin inhibits [a] -induced procarcinogenic signals in lung cancer cells, and curbs [a] -induced mutagenesis and lung carcinogenesis. Biofactors 2015,41(6),431-442. (PMID: 10.1002/biof.124426643788)
      Puliyappadamba V.T.; Cheriyan V.T.; Thulasidasan A.K.T.; Bava S.V.; Vinod B.S.; Prabhu P.R.; Varghese R.; Bevin A.; Venugopal S.; Anto R.J.; Nicotine-induced survival signaling in lung cancer cells is dependent on their p53 status while its down-regulation by curcumin is independent. Mol Cancer 2010,9(1),220. (PMID: 10.1186/1476-4598-9-22020727180)
      Haritha N.H.; Nawab A.; Vijayakurup V.; Anto N.P.; Liju V.B.; Alex V.V.; Amrutha A.N.; Aiswarya S.U.; Swetha M.; Vinod B.S.; Sundaram S.; Guijarro M.V.; Herlevich T.; Krishna A.; Nestory N.K.; Bava S.V.; Sadasivan C.; Zajac-Kaye M.; Anto R.J.; Targeting thymidylate synthase enhances the chemosensitivity of triple-negative breast cancer towards 5-FU-based combinatorial therapy. Front Oncol 2021,11,656804. (PMID: 10.3389/fonc.2021.65680434336653)
      Bava S.V.; Puliappadamba V.T.; Deepti A.; Nair A.; Karunagaran D.; Anto R.J.; Sensitization of taxol-induced apoptosis by curcumin involves down-regulation of nuclear factor-kappaB and the serine/threonine kinase Akt and is independent of tubulin polymerization. J Biol Chem 2005,280(8),6301-6308. (PMID: 10.1074/jbc.M41064720015590651)
      Bava S.V.; Sreekanth C.N.; Thulasidasan A.K.T.; Anto N.P.; Cheriyan V.T.; Puliyappadamba V.T.; Menon S.G.; Ravichandran S.D.; Anto R.J.; Akt is upstream and MAPKs are downstream of NF-κB in paclitaxel-induced survival signaling events, which are down-regulated by curcumin contributing to their synergism. Int J Biochem Cell Biol 2011,43(3),331-341. (PMID: 10.1016/j.biocel.2010.09.01120883815)
      Pan Z.; Zhuang J.; Ji C.; Cai Z.; Liao W.; Huang Z.; Curcumin inhibits hepatocellular carcinoma growth by targeting VEGF expression. Oncol Lett 2018,15(4),4821-4826. (PMID: 10.3892/ol.2018.798829552121)
      Abouzied M.M.M.; Eltahir H.M.; Abdel Aziz M.A.; Ahmed N.S.; Abd El-Ghany A.A.; Abd El-Aziz E.A.; Abd El-Aziz H.O.; Curcumin ameliorate DENA-induced HCC via modulating TGF-β, AKT, and caspase-3 expression in experimental rat model. Tumour Biol 2015,36(3),1763-1771. (PMID: 10.1007/s13277-014-2778-z25519685)
      Li J.; Curcumin inhibits hepatocellular carcinoma via regulating miR-21/TIMP3 axis. Evid Based Complement Altern Med 2020.
      Shao S.; Curcumin suppresses hepatic stellate cell-induced hepatocarcinoma angiogenesis and invasion through downregulating CTGF. Oxid Med Cell Longev 2019. (PMID: 10.1155/2019/8148510)
      Wang J.; Wang C.; Bu G.; Curcumin inhibits the growth of liver cancer stem cells through the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin signaling pathway. Exp Ther Med 2018,15(4),3650-3658. (PMID: 10.3892/etm.2018.580529545895)
      Thulasidasan A.K.T.; Retnakumari A.P.; Shankar M.; Vijayakurup V.; Anwar S.; Thankachan S.; Pillai K.S.; Pillai J.J.; Nandan C.D.; Alex V.V.; Chirayil T.J.; Sundaram S.; Kumar G.S.V.; Anto R.J.; Folic acid conjugation improves the bioavailability and chemosensitizing efficacy of curcumin-encapsulated PLGA-PEG nanoparticles towards paclitaxel chemotherapy. Oncotarget 2017,8(64),107374-107389. (PMID: 10.18632/oncotarget.2237629296172)
      Vijayakurup V.; Thulasidasan A.T.; Shankar G M.; Retnakumari A.P.; Nandan C.D.; Somaraj J.; Antony J.; Alex V.V.; Vinod B.S.; Liju V.B.; Sundaram S.; Kumar G.S.V.; Anto R.J.; Chitosan encapsulation enhances the bioavailability and tissue retention of curcumin and improves its efficacy in preventing B [a] P-induced lung carcinogenesis. Cancer Prev Res 2019,12(4),225-236. (PMID: 10.1158/1940-6207.CAPR-18-043730760502)
      Zheng Y.; Jia R.; Li J.; Tian X.; Qian Y.; Curcumin- and resveratrol-co-loaded nanoparticles in synergistic treatment of hepatocellular carcinoma. J Nanobiotechnology 2022,20(1),339. (PMID: 10.1186/s12951-022-01554-y35858935)
      Banerjee S.; Bueso-Ramos C.; Aggarwal B.B.; Suppression of 7,12-dimethylbenz(a)anthracene-induced mammary carcinogenesis in rats by resveratrol: Role of nuclear factor-kappaB, cyclooxygenase 2, and matrix metalloprotease 9. Cancer Res 2002,62(17),4945-4954. (PMID: 12208745)
      Zhang B.; Yin X.; Sui S.; Resveratrol inhibited the progression of human hepatocellular carcinoma by inducing autophagy via regulating p53 and the phosphoinositide 3-kinase/protein kinase B pathway. Oncol Rep 2018,40(5),2758-2765. (PMID: 10.3892/or.2018.664830132535)
      Bhattacharya S.; Therapeutic role of resveratrol against hepatocellular carcinoma: A review on its molecular mechanisms of action 2023,100233.
      Vinod B.S.; Nair H.H.; Vijayakurup V.; Shabna A.; Shah S.; Krishna A.; Pillai K.S.; Thankachan S.; Anto R.J.; Resveratrol chemosensitizes HER-2-overexpressing breast cancer cells to docetaxel chemoresistance by inhibiting docetaxel-mediated activation of HER-2–Akt axis. Cell Death Discov 2015,1(1),15061. (PMID: 10.1038/cddiscovery.2015.6127551486)
      Gao M.; Deng C.; Dang F.; Synergistic antitumor effect of resveratrol and sorafenib on hepatocellular carcinoma through PKA/AMPK/eEF2K pathway. Food Nutr Res 2021,65,65. (PMID: 10.29219/fnr.v65.360234776832)
      Izzo C.; Annunziata M.; Melara G.; Sciorio R.; Dallio M.; Masarone M.; Federico A.; Persico M.; The role of resveratrol in liver disease: A comprehensive review from in vitro to clinical trials. Nutrients 2021,13(3),933. (PMID: 10.3390/nu1303093333805795)
      Bishayee A.; Dhir N.; Resveratrol-mediated chemoprevention of diethylnitrosamine-initiated hepatocarcinogenesis: Inhibition of cell proliferation and induction of apoptosis. Chem Biol Interact 2009,179(2-3),131-144. (PMID: 10.1016/j.cbi.2008.11.01519073162)
      Xie L.; Dai H.; Li M.; Yang W.; Yu G.; Wang X.; Wang P.; Liu W.; Hu X.; Zhao M.; MARCH1 encourages tumour progression of hepatocellular carcinoma via regulation of PI3K-AKT-β-catenin pathways. J Cell Mol Med 2019,23(5),3386-3401. (PMID: 10.1111/jcmm.1423530793486)
      Chan E.W.C.; Resveratrol and pterostilbene: A comparative overview of their chemistry, biosynthesis, plant sources and pharmacological properties. J Appl Pharm Sci 2019,9(7),124-129. (PMID: 10.7324/JAPS.2019.90717)
      Shin H.J.; Han J.M.; Choi Y.S.; Jung H.J.; Pterostilbene suppresses both cancer cells and cancer stem-like cells in cervical cancer with superior bioavailability to resveratrol. Molecules 2020,25(1),228. (PMID: 10.3390/molecules2501022831935877)
      Wang R.; Xu Z.; Tian J.; Liu Q.; Dong J.; Guo L.; Hai B.; Liu X.; Yao H.; Chen Z.; Xu J.; Zhu L.; Chen H.; Hou T.; Zhu W.; Shao J.; Pterostilbene inhibits hepatocellular carcinoma proliferation and HBV replication by targeting ribonucleotide reductase M2 protein. Am J Cancer Res 2021,11(6),2975-2989. (PMID: 34249439)
      Qian Y.Y.; Liu Z.S.; Pan D.Y.; Li K.; Tumoricidal activities of pterostilbene depend upon destabilizing the MTA1-NuRD complex and enhancing P53 acetylation in hepatocellular carcinoma. Exp Ther Med 2017,14(4),3098-3104. (PMID: 10.3892/etm.2017.492329042910)
      Qian Y.Y.; Liu Z.S.; Zhang Z.; Levenson A.; Li K.; Pterostilbene increases PTEN expression through the targeted downregulation of microRNA-19a in hepatocellular carcinoma. Mol Med Rep 2018,17(4),5193-5201. (PMID: 10.3892/mmr.2018.851529393488)
      Yu C.L.; Yang S.F.; Hung T.W.; Lin C.L.; Hsieh Y.H.; Chiou H.L.; Inhibition of eIF2α dephosphorylation accelerates pterostilbene-induced cell death in human hepatocellular carcinoma cells in an ER stress and autophagy-dependent manner. Cell Death Dis 2019,10(6),418. (PMID: 10.1038/s41419-019-1639-531138785)
      Lee C.-M.; BlueBerry isolate, pterostilbene, functions as a potential anticancer stem cell agent in suppressing irradiation-mediated enrichment of hepatoma stem cells. Evid Based Complement Altern Med 2013. (PMID: 10.1155/2013/258425)
      Pan M.H.; Chiou Y.S.; Chen W.J.; Wang J.M.; Badmaev V.; Ho C.T.; Pterostilbene inhibited tumor invasion via suppressing multiple signal transduction pathways in human hepatocellular carcinoma cells. Carcinogenesis 2009,30(7),1234-1242. (PMID: 10.1093/carcin/bgp12119447859)
      Huang C.S.; Ho C.T.; Tu S.H.; Pan M.H.; Chuang C.H.; Chang H.W.; Chang C.H.; Wu C.H.; Ho Y.S.; Long-term ethanol exposure-induced hepatocellular carcinoma cell migration and invasion through lysyl oxidase activation are attenuated by combined treatment with pterostilbene and curcumin analogues. J Agric Food Chem 2013,61(18),4326-4335. (PMID: 10.1021/jf400417523560895)
      Wang P.; Sang S.; Metabolism and pharmacokinetics of resveratrol and pterostilbene. Biofactors 2018,44(1),16-25. (PMID: 10.1002/biof.141029315886)
      Nath L.R.; Gorantla J.N.; Thulasidasan A.K.T.; Vijayakurup V.; Shah S.; Anwer S.; Joseph S.M.; Antony J.; Veena K.S.; Sundaram S.; Marelli U.K.; Lankalapalli R.S.; Anto R.J.; Evaluation of uttroside B, a saponin from Solanum nigrum Linn, as a promising chemotherapeutic agent against hepatocellular carcinoma. Sci Rep 2016,6(1),36318. (PMID: 10.1038/srep3631827808117)
      Swetha M.; Keerthana C.K.; Rayginia T.P.; Nath L.R.; Haritha N.H.; Shabna A.; Kalimuthu K.; Thangarasu A.K.; Aiswarya S.U.; Jannet S.; Pillai S.; Harikumar K.B.; Sundaram S.; Anto N.P.; Wu D.H.; Lankalapalli R.S.; Towner R.; Isakov N.; Deepa S.S.; Anto R.J.; Augmented efficacy of uttroside B over sorafenib in a murine model of human hepatocellular carcinoma. Pharmaceuticals 2022,15(5),636. (PMID: 10.3390/ph1505063635631464)
      Nath L.R.; Blockade of uttroside B-induced autophagic pro-survival signals augments its chemotherapeutic efficacy against hepatocellular carcinoma. Front Oncol 2022,12,247.
      Suresh Varma S.; Aiswarya S.U.; Keerthana C.K.; Rayginia T.P.; Induja D.K.; John Anto R.; Lankalapalli R.S.; Putative role of uttronin (degalactotigonin) in cytotoxicity of uttroside B in HepG2 cells. Tetrahedron Lett 2023,127,154668. (PMID: 10.1016/j.tetlet.2023.154668)
      Wu K.; Study on chemical components of steroidal saponins from Tribulus terrestris L. J Tianjin Univ Trad Chin Med 2012,31,225-228.
      Jin J.M.; Zhang Y.J.; Yang C.R.; Spirostanol and furostanol glycosides from the fresh tubers of Polianthes tuberosa. J Nat Prod 2004,67(1),5-9. (PMID: 10.1021/np034028a14738376)
      Alam M.F.; Ajeibi A.O.; Safhi M.H.; Alabdly A.J.A.; Alshahrani S.; Rashid H.; Qadri M.; Jali A.M.; Alqahtani S.; Nomier Y.; Moni S.S.; Khalid M.; Anwer T.; Therapeutic potential of capsaicin against cyclophosphamide-induced liver damage. J Clin Med 2023,12(3),911. (PMID: 10.3390/jcm1203091136769559)
      Hacioglu C.; Kar F.; Capsaicin induces redox imbalance and ferroptosis through ACSL4/GPx4 signaling pathways in U87-MG and U251 glioblastoma cells. Metab Brain Dis 2023,38(2),393-408. (PMID: 10.1007/s11011-022-00983-w35438378)
      Ilie M.; Caruntu C.; Tampa M.; Georgescu S.R.; Matei C.; Negrei C.; Ion R.M.; Constantin C.; Neagu M.; Boda D.; Capsaicin: Physicochemical properties, cutaneous reactions and potential applications in painful and inflammatory conditions (Review). Exp Ther Med 2019,18(2),916-925. (PMID: 10.3892/etm.2019.751331384324)
      Zhang S.; Wang D.; Huang J.; Hu Y.; Xu Y.; Application of capsaicin as a potential new therapeutic drug in human cancers. J Clin Pharm Ther 2020,45(1),16-28. (PMID: 10.1111/jcpt.1303931545523)
      Jung M.Y.; Kang H.J.; Moon A.; Capsaicin-induced apoptosis in SK-Hep-1 hepatocarcinoma cells involves Bcl-2 downregulation and caspase-3 activation. Cancer Lett 2001,165(2),139-145. (PMID: 10.1016/S0304-3835(01)00426-811275362)
      Hacioglu C.; Capsaicin inhibits cell proliferation by enhancing oxidative stress and apoptosis through SIRT1/NOX4 signaling pathways in HepG2 and HL-7702 cells. J Biochem Mol Toxicol 2022,36(3),e22974. (PMID: 10.1002/jbt.2297434939720)
      Xie Z.Q.; Li H.X.; Hou X.J.; Huang M.Y.; Zhu Z.M.; Wei L.X.; Tang C.X.; Capsaicin suppresses hepatocarcinogenesis by inhibiting the stemness of hepatic progenitor cells via / signaling pathway. Cancer Med 2022,11(22),4283-4296. (PMID: 10.1002/cam4.477735674129)
      Dai N.; Ye R.; He Q.; Guo P.; Chen H.; Zhang Q.; Capsaicin and sorafenib combination treatment exerts synergistic anti-hepatocellular carcinoma activity by suppressing EGFR and PI3K/Akt/mTOR signaling. Oncol Rep 2018,40(6),3235-3248. (PMID: 30272354)
      Bort A.; Spínola E.; Rodríguez-Henche N.; Díaz-Laviada I.; Capsaicin exerts synergistic antitumor effect with sorafenib in hepatocellular carcinoma cells through AMPK activation. Oncotarget 2017,8(50),87684-87698. (PMID: 10.18632/oncotarget.2119629152112)
      Chaiyasit K.; Khovidhunkit W.; Wittayalertpanya S.; Pharmacokinetic and the effect of capsaicin in Capsicum frutescens on decreasing plasma glucose level. J Med Assoc Thai 2009,92(1),108-113. (PMID: 19260251)
      Osarieme E.D.; Modupe D.T.; Oluchukwu O.P.; The anticancer activity of caffeine-a review. Arch Clin Biomed Res 2019,3(5),326-342.
      Kisku T.; Paul K.; Singh B.; Das S.; Mukherjee S.; Kundu A.; Rath J.; Sekhar Das R.; Synthesis of Cu(II)-caffeine complex as potential therapeutic agent: Studies on antioxidant, anticancer and pharmacological activities. J Mol Liq 2022,364,119897. (PMID: 10.1016/j.molliq.2022.119897)
      Okano J.; Nagahara T.; Matsumoto K.; Murawaki Y.; Caffeine inhibits the proliferation of liver cancer cells and activates the MEK/ERK/EGFR signalling pathway. Basic Clin Pharmacol Toxicol 2008,102(6),543-551. (PMID: 10.1111/j.1742-7843.2008.00231.x18346049)
      Wang Z.; Gu C.; Wang X.; Lang Y.; Wu Y.; Wu X.; Zhu X.; Wang K.; Yang H.; Caffeine enhances the anti-tumor effect of 5-fluorouracil via increasing the production of reactive oxygen species in hepatocellular carcinoma. Med Oncol 2019,36(12),97. (PMID: 10.1007/s12032-019-1323-831664534)
      Kawano Y.; Nagata M.; Kohno T.; Ichimiya A.; Iwakiri T.; Okumura M.; Arimori K.; Caffeine increases the antitumor effect of Cisplatin in human hepatocellular carcinoma cells. Biol Pharm Bull 2012,35(3),400-407. (PMID: 10.1248/bpb.35.40022382328)
      Wang T.J.; Liu Z.S.; Zeng Z.C.; Du S.S.; Qiang M.; Zhang S.M.; Zhang Z.Y.; Tang Z.Y.; Wu W.Z.; Zeng H.Y.; Caffeine enhances radiosensitization to orthotopic transplant LM3 hepatocellular carcinoma in vivo. Cancer Sci 2010,101(6),1440-1446. (PMID: 10.1111/j.1349-7006.2010.01564.x20384627)
      Goh Y.X.; Jalil J.; Lam K.W.; Husain K.; Premakumar C.M.; Genistein: A review on its anti-inflammatory properties. Front Pharmacol 2022,13,820969. (PMID: 10.3389/fphar.2022.82096935140617)
      Mousavi Y.; Adlercreutz H.; Genistein is an effective stimulator of sex hormone-binding globulin production in hepatocarcinoma human liver cancer cells and suppresses proliferation of these cells in culture. Steroids 1993,58(7),301-304. (PMID: 10.1016/0039-128X(93)90088-58212077)
      Chodon D.; Ramamurty N.; Sakthisekaran D.; Preliminary studies on induction of apoptosis by genistein on HepG2 cell line. Toxicol In vitro 2007,21(5),887-891. (PMID: 10.1016/j.tiv.2007.01.02317391909)
      Chodon D.; Banu S.M.; Padmavathi R.; Sakthisekaran D.; Inhibition of cell proliferation and induction of apoptosis by genistein in experimental hepatocellular carcinoma. Mol Cell Biochem 2007,297(1-2),73-80. (PMID: 10.1007/s11010-006-9324-217006617)
      Zhang Q.; Inhibitory effect of genistein on PLC/PRF5 hepatocellular carcinoma cell line. 2015.
      Zhang Q.; Bao J.; Yang J.; Genistein-triggered anticancer activity against liver cancer cell line HepG2 involves ROS generation, mitochondrial apoptosis, G2/M cell cycle arrest and inhibition of cell migrationand inhibition of cell migration. Arch Med Sci 2019,15(4),1001-1009. (PMID: 10.5114/aoms.2018.7874231360194)
      Lee S.R.; Kwon S.W.; Lee Y.H.; Kaya P.; Kim J.M.; Ahn C.; Jung E.M.; Lee G.S.; An B.S.; Jeung E.B.; Park B.; Hong E.J.; Dietary intake of genistein suppresses hepatocellular carcinoma through AMPK-mediated apoptosis and anti-inflammation. BMC Cancer 2019,19(1),6. (PMID: 10.1186/s12885-018-5222-830606143)
      Dai W.; Wang F.; He L.; Lin C.; Wu S.; Chen P.; Zhang Y.; Shen M.; Wu D.; Wang C.; Lu J.; Zhou Y.; Xu X.; Xu L.; Guo C.; Genistein inhibits hepatocellular carcinoma cell migration by reversing the epithelial–mesenchymal transition: Partial mediation by the transcription factor NFAT . Mol Carcinog 2015,54(4),301-311. (PMID: 10.1002/mc.2210024243709)
      Gu Y.; Zhu C.F.; Dai Y.L.; Zhong Q.; Sun B.; Inhibitory effects of genistein on metastasis of human hepatocellular carcinoma. World J Gastroenterol 2009,15(39),4952-4957. (PMID: 10.3748/wjg.15.495219842228)
      Wang S.D.; Chen B.C.; Kao S.T.; Liu C.J.; Yeh C.C.; Genistein inhibits tumor invasion by suppressing multiple signal transduction pathways in human hepatocellular carcinoma cells. BMC Complement Altern Med 2014,14(1),26. (PMID: 10.1186/1472-6882-14-2624433534)
      Chodon D.; Arumugam A.; Rajasekaran D.; Dhanapal S.; Effect of genistein on modulating lipid peroxidation and membrane-bound enzymes in N-nitrosodiethylamine-induced and phenobarbital-promoted rat liver carcinogenesis. J Health Sci 2008,54(2),137-142. (PMID: 10.1248/jhs.54.137)
      Chen P.; Hu M.D.; Deng X.F.; Li B.; Genistein reinforces the inhibitory effect of Cisplatin on liver cancer recurrence and metastasis after curative hepatectomy. Asian Pac J Cancer Prev 2013,14(2),759-764. (PMID: 10.7314/APJCP.2013.14.2.75923621233)
      Sanaei M.; Kavoosi F.; Atashpour S.; Haghighat S.; Effects of genistein and synergistic action in combination with tamoxifen on the HepG2 human hepatocellular carcinoma cell line. Asian Pac J Cancer Prev APJCP 2017,18(9),2381-2385. (PMID: 28950682)
      Li D.; Cao D.; Cui Y.; Sun Y.; Jiang J.; Cao X.; The potential of epigallocatechin gallate in the chemoprevention and therapy of hepatocellular carcinoma. Front Pharmacol 2023,14,1201085. (PMID: 10.3389/fphar.2023.120108537292151)
      Min K.; Kwon T.K.; Anticancer effects and molecular mechanisms of epigallocatechin-3-gallate. Integr Med Res 2014,3(1),16-24. (PMID: 10.1016/j.imr.2013.12.00128664074)
      Kuo P-L.; Lin C-C.; Green tea constituent (-)-epigallocatechin-3-gallate inhibits Hep G2 cell proliferation and induces apoptosis through p53-dependent and Fas-mediated pathways. J Biomed Sci 2003,10(2),219-227. (PMID: 12595758)
      Shimizu M.; Shirakami Y.; Sakai H.; Tatebe H.; Nakagawa T.; Hara Y.; Weinstein I.B.; Moriwaki H.; EGCG inhibits activation of the insulin-like growth factor (IGF)/IGF-1 receptor axis in human hepatocellular carcinoma cells. Cancer Lett 2008,262(1),10-18. (PMID: 10.1016/j.canlet.2007.11.02618164805)
      Shirakami Y.; Shimizu M.; Adachi S.; Sakai H.; Nakagawa T.; Yasuda Y.; Tsurumi H.; Hara Y.; Moriwaki H.; (–)-Epigallocatechin gallate suppresses the growth of human hepatocellular carcinoma cells by inhibiting activation of the vascular endothelial growth factor–vascular endothelial growth factor receptor axis. Cancer Sci 2009,100(10),1957-1962. (PMID: 10.1111/j.1349-7006.2009.01241.x19558547)
      Tang Y.; Cao J.; Cai Z.; An H.; Li Y.; Peng Y.; Chen N.; Luo A.; Tao H.; Li K.; Epigallocatechin gallate induces chemopreventive effects on rats with diethylnitrosamine-induced liver cancer via inhibition of cell division cycle 25A. Mol Med Rep 2020,22(5),3873-3885. (PMID: 10.3892/mmr.2020.1146333000276)
      Sur S.; Pal D.; Roy R.; Barua A.; Roy A.; Saha P.; Panda C.K.; Tea polyphenols EGCG and TF restrict tongue and liver carcinogenesis simultaneously induced by N-nitrosodiethylamine in mice. Toxicol Appl Pharmacol 2016,300,34-46. (PMID: 10.1016/j.taap.2016.03.01627058323)
      Shen X.; Zhao J.; Wang Q.; Chen P.; Hong Y.; He X.; Chen D.; Liu H.; Wang Y.; Cai X.; The invasive potential of hepatoma cells induced by radiotherapy is related to the activation of hepatic stellate cells and could be inhibited by EGCG through the TLR4 signaling pathway. Radiat Res 2022,197(4),365-375. (PMID: 10.1667/RADE-21-00129.135051295)
      Liang G.; Tang A.; Lin X.; Li L.; Zhang S.; Huang Z.; Tang H.; Li Q.Q.; Green tea catechins augment the antitumor activity of doxorubicin in an in vivo mouse model for chemoresistant liver cancer. Int J Oncol 2010,37(1),111-123. (PMID: 20514403)
      Wei D.Z.; Yang J.Y.; Liu J.W.; Tong W.Y.; Inhibition of liver cancer cell proliferation and migration by a combination of (-)-epigallocatechin-3-gallate and ascorbic acid. J Chemother 2003,15(6),591-595. (PMID: 10.1179/joc.2003.15.6.59114998086)
      Imran M.; Rauf A.; Abu-Izneid T.; Nadeem M.; Shariati M.A.; Khan I.A.; Imran A.; Orhan I.E.; Rizwan M.; Atif M.; Gondal T.A.; Mubarak M.S.; Luteolin, a flavonoid, as an anticancer agent: A review. Biomed Pharmacother 2019,112,108612. (PMID: 10.1016/j.biopha.2019.10861230798142)
      Çetinkaya M.; Baran Y.; Therapeutic potential of luteolin on cancer. Vaccines 2023,11(3),554. (PMID: 10.3390/vaccines1103055436992138)
      Yao C.; Dai S.; Wang C.; Fu K.; Wu R.; Zhao X.; Yao Y.; Li Y.; Luteolin as a potential hepatoprotective drug: Molecular mechanisms and treatment strategies. Biomed Pharmacother 2023,167,115464. (PMID: 10.1016/j.biopha.2023.11546437713990)
      Ding S.; Hu A.; Hu Y.; Ma J.; Weng P.; Dai J.; Anti-hepatoma cells function of luteolin through inducing apoptosis and cell cycle arrest. Tumour Biol 2014,35(4),3053-3060. (PMID: 10.1007/s13277-013-1396-524287949)
      Hwang Y.J.; Lee E.J.; Kim H.R.; Hwang K.A.; Molecular mechanisms of luteolin-7-O-glucoside-induced growth inhibition on human liver cancer cells: G2/M cell cycle arrest and caspase-independent apoptotic signaling pathways. BMB Rep 2013,46(12),611-616. (PMID: 10.5483/BMBRep.2013.46.12.13324257119)
      Niu J.X.; Guo H.P.; Gan H.M.; Bao L.D.; Ren J.J.; Effect of luteolin on gene expression in mouse H22 hepatoma cells. Genet Mol Res 2015,14(4),14448-14456. (PMID: 10.4238/2015.November.18.726600503)
      Cao Z.; Zhang H.; Cai X.; Fang W.; Chai D.; Wen Y.; Chen H.; Chu F.; Zhang Y.; Luteolin promotes cell apoptosis by inducing autophagy in hepatocellular carcinoma. Cell Physiol Biochem 2017,43(5),1803-1812. (PMID: 10.1159/00048406629049999)
      Zhang Q.; Yang J.; Wang J.; Modulatory effect of luteolin on redox homeostasis and inflammatory cytokines in a mouse model of liver cancer. Oncol Lett 2016,12(6),4767-4772. (PMID: 10.3892/ol.2016.529128101223)
      Balamurugan K.; Karthikeyan J.; Evaluation of the antioxidant and anti-inflammatory nature of luteolin in experimentally induced hepatocellular carcinoma. Biomed Prev Nutr 2012,2(2),86-90. (PMID: 10.1016/j.bionut.2012.01.002)
      Nazim U.M.; Park S.Y.; Luteolin sensitizes human liver cancer cells to TRAIL-induced apoptosis via autophagy and JNK-mediated death receptor 5 upregulation. Int J Oncol 2019,54(2),665-672. (PMID: 30431076)
      Horiuchi K.; Shiota S.; Kuroda T.; Hatano T.; Yoshida T.; Tsuchiya T.; Potentiation of antimicrobial activity of aminoglycosides by carnosol from Salvia officinalis. Biol Pharm Bull 2007,30(2),287-290. (PMID: 10.1248/bpb.30.28717268067)
      Offord E.A.; Macé K.; Avanti O.; Pfeifer A.M.A.; Mechanisms involved in the chemoprotective effects of rosemary extract studied in human liver and bronchial cells. Cancer Lett 1997,114(1-2),275-281. (PMID: 10.1016/S0304-3835(97)04680-69103309)
      Sotelo-Félix J.I.; Martinez-Fong D.; Muriel De la Torre P.; Protective effect of carnosol on CCl4-induced acute liver damage in rats. Eur J Gastroenterol Hepatol 2002,14(9),1001-1006. (PMID: 10.1097/00042737-200209000-0001112352220)
      Kong S.; Xiao W.; Ma T.; Chen Y.; Shi H.; Tu J.; Zou J.; Zhang M.; Carnosol inhibits the proliferation, migration, and invasion of hepatocellular carcinoma cells in vitro by regulating the ampk signaling pathway. Anticancer Agents Med Chem 2023. (PMID: 37073668)
      Castellano J.M.; Ramos-Romero S.; Perona J.S.; Oleanolic acid: Extraction, characterization and biological activity. Nutrients 2022,14(3),623. (PMID: 10.3390/nu1403062335276982)
      Wang H.; Zhong W.; Zhao J.; Zhang H.; Zhang Q.; Liang Y.; Chen S.; Liu H.; Zong S.; Tian Y.; Zhou H.; Sun T.; Liu Y.; Yang C.; Oleanolic acid inhibits epithelial–mesenchymal transition of hepatocellular carcinoma by promoting iNOS dimerization. Mol Cancer Ther 2019,18(1),62-74. (PMID: 10.1158/1535-7163.MCT-18-044830297361)
      Shyu M.H.; Kao T.C.; Yen G.C.; Oleanolic acid and ursolic acid induce apoptosis in HuH7 human hepatocellular carcinoma cells through a mitochondrial-dependent pathway and downregulation of XIAP. J Agric Food Chem 2010,58(10),6110-6118. (PMID: 10.1021/jf100574j20415421)
      Khan M.; Zhao P.; Khan A.; Raza F.; Raza S.M.; Sarfraz M.; Chen Y.; Li M.; Yang T.; Ma X.; Xiang G.; Synergism of cisplatin-oleanolic acid co-loaded calcium carbonate nanoparticles on hepatocellular carcinoma cells for enhanced apoptosis and reduced hepatotoxicity. Int J Nanomedicine 2019,14,3753-3771. (PMID: 10.2147/IJN.S19665131239661)
      Jeong D.W.; Kim Y.H.; Kim H.H.; Ji H.Y.; Yoo S.D.; Choi W.R.; Lee S.M.; Han C.K.; Lee H.S.; Dose-linear pharmacokinetics of oleanolic acid after intravenous and oral administration in rats. Biopharm Drug Dispos 2007,28(2),51-57. (PMID: 10.1002/bdd.53017163409)
      Bava S.V.; Puliyappadamba V.T.; Deepti A.; Nair A.; Karunagaran D.; Anto R.J.; Sensitization of taxol-induced apoptosis by curcumin involves down-regulation of nuclear factor-κ B and the serine/threonine kinase Akt and is independent of tubulin polymerization. J Biol Chem 2018,293(31),12283. (PMID: 10.1074/jbc.AAC118.00474530076255)
      Arumuggam N.; Bhowmick N.A.; Rupasinghe H.P.V.; A review: Phytochemicals targeting JAK/STAT signaling and IDO expression in cancer. Phytother Res 2015,29(6),805-817. (PMID: 10.1002/ptr.532725787773)
      Parveen A.; Subedi L.; Kim H.; Khan Z.; Zahra Z.; Farooqi M.; Kim S.; Phytochemicals targeting VEGF and VEGF-related multifactors as anticancer therapy. J Clin Med 2019,8(3),350. (PMID: 10.3390/jcm803035030871059)
      Dave A.; Phytochemicals and cancer chemoprevention. J Cancer Metastasis Treat 2020,6,46.
      Capiralla H.; Vingtdeux V.; Zhao H.; Sankowski R.; Al-Abed Y.; Davies P.; Marambaud P.; Resveratrol mitigates lipopolysaccharide- and Aβ-mediated microglial inflammation by inhibiting the TLR4/NF-κB/STAT signaling cascade. J Neurochem 2012,120(3),461-472. (PMID: 10.1111/j.1471-4159.2011.07594.x22118570)
      Ferrari E.; Bettuzzi S.; Naponelli V.; The potential of epigallocatechin gallate (EGCG) in targeting autophagy for cancer treatment: A narrative review. Int J Mol Sci 2022,23(11),6075. (PMID: 10.3390/ijms2311607535682754)
      Bimonte S.; Albino V.; Piccirillo M.; Nasto A.; Molino C.; Palaia R.; Cascella M.; Epigallocatechin-3-gallate in the prevention and treatment of hepatocellular carcinoma: Experimental findings and translational perspectives. Drug Des Devel Ther 2019,13,611-621. (PMID: 10.2147/DDDT.S18007930858692)
      Zhou Q.; Lui V.W.Y.; Yeo W.; Targeting the PI3K/Akt/mTOR pathway in hepatocellular carcinoma. Future Oncol 2011,7(10),1149-1167. (PMID: 10.2217/fon.11.9521992728)
      Witkowska-Banaszczak E.; Krajka-Kuźniak V.; Papierska K.; The effect of luteolin 7-glucoside, apigenin 7-glucoside and Succisa pratensis extracts on NF-κB activation and α-amylase activity in HepG2 cells. Acta Biochim Pol 2020,67(1),41-47. (PMID: 10.18388/abp.2020_289432129972)
      Gu Y.; Zhu C.F.; Iwamoto H.; Chen J.S.; Genistein inhibits invasive potential of human hepatocellular carcinoma by altering cell cycle, apoptosis, and angiogenesis. World J Gastroenterol 2005,11(41),6512-6517. (PMID: 10.3748/wjg.v11.i41.651216425425)
      Tong Y.; Wang M.; Huang H.; Zhang J.; Huang Y.; Chen Y.; Pan H.; Inhibitory effects of genistein in combination with gefitinib on the hepatocellular carcinoma Hep3B cell line. Exp Ther Med 2019,18(5),3793-3800. (PMID: 10.3892/etm.2019.802731611933)
      Seydi E.; Salimi A.; Rasekh H.R.; Mohsenifar Z.; Pourahmad J.; Selective cytotoxicity of luteolin and kaempferol on cancerous hepatocytes obtained from rat model of hepatocellular carcinoma: involvement of ROS-mediated mitochondrial targeting. Nutr Cancer 2018,70(4),594-604. (PMID: 10.1080/01635581.2018.146067929693446)
      Yang P.W.; Lu Z.Y.; Pan Q.; Chen T.T.; Feng X.J.; Wang S.M.; Pan Y.C.; Zhu M.H.; Zhang S.H.; MicroRNA-6809-5p mediates luteolin-induced anticancer effects against hepatoma by targeting flotillin 1. Phytomedicine 2019,57,18-29. (PMID: 10.1016/j.phymed.2018.10.02730668319)
      Liao S.; Lin J.; Liu J.; Chen T.; Xu M.; Zheng J.; Chemoprevention of elite tea variety CFT-1 rich in EGCG against chemically induced liver cancer in rats. Food Sci Nutr 2019,7(8),2647-2665. (PMID: 10.1002/fsn3.112131428352)
      Chen R.J.; Kuo H.C.; Cheng L.H.; Lee Y.H.; Chang W.T.; Wang B.J.; Wang Y.J.; Cheng H.C.; Apoptotic and nonapoptotic activities of pterostilbene against cancer. Int J Mol Sci 2018,19(1),287. (PMID: 10.3390/ijms1901028729346311)
      Qian Y.; Liu Z.; Yan H.; Yuan Y.; Levenson A.S.; Li K.; Pterostilbene inhibits MTA1/HDAC1 complex leading to PTEN acetylation in hepatocellular carcinoma. Biomed Pharmacother 2018,101,852-859. (PMID: 10.1016/j.biopha.2018.03.02229635894)
    • Grant Information:
      The Wellcome Trust DBT India Alliance
    • Contributed Indexing:
      Keywords: Liver cancer; cell signalling; chemopreventives; chemosensitization; chemotherapeutics; hepatocellular carcinoma.
    • Accession Number:
      0 (Phytochemicals)
      0 (Antineoplastic Agents, Phytogenic)
    • Publication Date:
      Date Created: 20240112 Date Completed: 20240905 Latest Revision: 20240905
    • Publication Date:
      20240905
    • Accession Number:
      10.2174/0109298673275501231213063902
    • Accession Number:
      38213177