Increased privatization of a public resource leads to spread of cooperation in a microbial population.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Author(s): Raj N;Raj N; Saini S; Saini S
  • Source:
    Microbiology spectrum [Microbiol Spectr] 2024 Feb 06; Vol. 12 (2), pp. e0235823. Date of Electronic Publication: 2024 Jan 11.
  • Publication Type:
    Journal Article
  • Language:
    English
  • Additional Information
    • Source:
      Publisher: ASM Press Country of Publication: United States NLM ID: 101634614 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2165-0497 (Electronic) Linking ISSN: 21650497 NLM ISO Abbreviation: Microbiol Spectr Subsets: MEDLINE
    • Publication Information:
      Original Publication: Washington, DC : ASM Press, 2013-
    • Subject Terms:
    • Abstract:
      The phenomenon of cooperation is prevalent at all levels of life. In one such manifestation of cooperation in microbial communities, some cells produce costly extracellular resources that are freely available to others. These resources are referred to as public goods. Saccharomyces cerevisiae secretes invertase (public good) in the periplasm to hydrolyze sucrose into glucose and fructose, which are then imported by the cells. After hydrolysis of sucrose, a cooperator retains only 1% of the monosaccharides, while 99% of the monosaccharides diffuse into the environment and can be utilized by any cell. The non-producers of invertase (cheaters) exploit the invertase-producing cells (cooperators) by utilizing the monosaccharides and not paying the metabolic cost of producing the invertase. In this work, we investigate the evolutionary dynamics of this cheater-cooperator system. In a co-culture, if cheaters are selected for their higher fitness, the population will collapse. On the other hand, for cooperators to survive in the population, a strategy to increase fitness would likely be required. To understand the adaptation of cooperators in sucrose, we performed a coevolution experiment in sucrose. Our results show that cooperators increase in fitness as the experiment progresses. This phenomenon was not observed in environments which involved a non-public good system. Genome sequencing reveals duplication of several HXT transporters in the evolved cooperators. Based on these results, we hypothesize that increased privatization of the monosaccharides is the most likely explanation of spread of cooperators in the population.IMPORTANCEHow is cooperation, as a trait, maintained in a population? In order to answer this question, we perform a coevolution experiment between two strains of yeast-one which produces a public good to release glucose and fructose in the media, thus generating a public resource, and the other which does not produce public resource and merely benefits from the presence of the cooperator strain. What is the outcome of this coevolution experiment? We demonstrate that after ~200 generations of coevolution, cooperators increase in frequency in the co-culture. Remarkably, in all parallel lines of our experiment, this is obtained via duplication of regions which likely allow greater privatization of glucose and fructose. Thus, increased privatization, which is intuitively thought to be a strategy against cooperation, enables spread of cooperation.
      Competing Interests: The authors declare no conflict of interest.
    • References:
      Bioinformatics. 2009 Jul 15;25(14):1754-60. (PMID: 19451168)
      Sci Rep. 2017 Sep 5;7(1):10570. (PMID: 28874807)
      Proc Biol Sci. 2017 Jul 26;284(1859):. (PMID: 28747481)
      PLoS Biol. 2010 Sep 14;8(9):. (PMID: 20856906)
      Science. 2009 May 22;324(5930):1029-33. (PMID: 19460998)
      PLoS Biol. 2006 Sep;4(9):e299. (PMID: 16968138)
      Gigascience. 2021 Nov 18;10(11):. (PMID: 34817058)
      EMBO J. 1987 Nov;6(11):3499-505. (PMID: 3322809)
      Genetics. 1960 Aug;45(8):1085-110. (PMID: 17247984)
      Microbiol Mol Biol Rev. 1999 Sep;63(3):554-69. (PMID: 10477308)
      Proc Natl Acad Sci U S A. 2006 Jul 18;103(29):10952-5. (PMID: 16829575)
      Mol Cell Biol. 1986 Nov;6(11):3891-9. (PMID: 3025617)
      PLoS Biol. 2013;11(4):e1001547. (PMID: 23637571)
      Proc Natl Acad Sci U S A. 2015 Feb 17;112(7):2187-91. (PMID: 25646454)
      Mol Cell Biol. 2000 Oct;20(20):7654-61. (PMID: 11003661)
      Annu Rev Microbiol. 2001;55:165-99. (PMID: 11544353)
      Microb Cell Fact. 2014 Jan 09;13:5. (PMID: 24401081)
      Genome Biol. 2016 Jun 06;17(1):122. (PMID: 27268795)
      Genome Res. 2010 Sep;20(9):1297-303. (PMID: 20644199)
      Mol Cell Biol. 1996 Sep;16(9):4790-7. (PMID: 8756637)
      PLoS Comput Biol. 2022 Nov 1;18(11):e1010666. (PMID: 36318525)
      Microbiol Mol Biol Rev. 2021 Jan 13;85(1):. (PMID: 33441489)
      Elife. 2013 Apr 02;2:e00367. (PMID: 23577233)
      Biochim Biophys Acta. 1962 Jan 1;56:49-62. (PMID: 13884257)
      J Theor Biol. 2012 Apr 21;299:31-41. (PMID: 21419783)
      J Bacteriol. 1973 Feb;113(2):1073-5. (PMID: 4570593)
      Proc Natl Acad Sci U S A. 2007 Oct 2;104(40):15876-81. (PMID: 17898171)
      Proc Biol Sci. 2004 Feb 7;271 Suppl 3:S25-6. (PMID: 15101409)
      J Evol Biol. 2019 May;32(5):412-424. (PMID: 30724418)
      J R Soc Interface. 2017 Feb;14(127):. (PMID: 28148770)
      Microb Genom. 2018 Sep;4(9):. (PMID: 30142055)
      PLoS Biol. 2011 Aug;9(8):e1001122. (PMID: 21857801)
      Microb Cell Fact. 2008 Feb 27;7:4. (PMID: 18304329)
      FEMS Microbiol Lett. 1999 Dec 15;181(2):281-7. (PMID: 10585550)
      J Gen Microbiol. 1991 May;137(5):1039-44. (PMID: 1865178)
      BMC Evol Biol. 2013 Jan 09;13:4. (PMID: 23298336)
      Nat Ecol Evol. 2023 Jan;7(1):143-154. (PMID: 36593292)
      Methods Enzymol. 2013;529:153-60. (PMID: 24011043)
      Nat Commun. 2017 Jan 24;8:14061. (PMID: 28117401)
      FEBS Lett. 1983 May 30;156(1):11-4. (PMID: 6221943)
      Yeast. 1997 Feb;13(2):127-37. (PMID: 9046094)
      Trends Microbiol. 2004 Feb;12(2):72-8. (PMID: 15036323)
      J Bacteriol. 2017 Aug 28;199(22):. (PMID: 28847922)
      Mol Biol Evol. 1998 Aug;15(8):931-42. (PMID: 9718721)
      Nature. 2009 May 14;459(7244):253-6. (PMID: 19349960)
      Mol Biosyst. 2016 Oct 18;12(11):3338-3346. (PMID: 27754502)
      FEMS Yeast Res. 2016 Feb;16(1):fov107. (PMID: 26658003)
      Genetics. 1984 Dec;108(4):845-58. (PMID: 6392017)
      FEBS Lett. 1999 Dec 31;464(3):123-8. (PMID: 10618490)
      Yeast. 1998 Jan 30;14(2):115-32. (PMID: 9483801)
      Proc Natl Acad Sci U S A. 2012 Nov 20;109(47):19079-86. (PMID: 23091010)
      Bioinformatics. 2009 Aug 15;25(16):2078-9. (PMID: 19505943)
      FEMS Microbiol Rev. 1993 Apr;10(3-4):229-42. (PMID: 8318258)
      Nat Commun. 2014 May 02;5:3713. (PMID: 24785661)
      PLoS Biol. 2013;11(4):e1001549. (PMID: 23637573)
      Nat Commun. 2017 Sep 4;8(1):414. (PMID: 28871205)
      Cr Trav Lab Carlsberg Ser Physiol. 1952;25(2):141-71. (PMID: 14936370)
      J Evol Biol. 2008 Nov;21(6):1836-43. (PMID: 18643862)
    • Grant Information:
      United Kingdom WT_ Wellcome Trust
    • Contributed Indexing:
      Keywords: CNV; SNV/indel; cheating; cooperation; microbe; public good system; sucrose; yeast
    • Accession Number:
      EC 3.2.1.26 (beta-Fructofuranosidase)
      IY9XDZ35W2 (Glucose)
      30237-26-4 (Fructose)
      57-50-1 (Sucrose)
    • Publication Date:
      Date Created: 20240111 Date Completed: 20240208 Latest Revision: 20240210
    • Publication Date:
      20240210
    • Accession Number:
      PMC10846273
    • Accession Number:
      10.1128/spectrum.02358-23
    • Accession Number:
      38206031