Effects of sodium selenite, cysteamine, bacterially synthesized Se-NPs, and cysteamine loaded on Se-NPs on ram sperm cryopreservation.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Nature Publishing Group Country of Publication: England NLM ID: 101563288 Publication Model: Electronic Cited Medium: Internet ISSN: 2045-2322 (Electronic) Linking ISSN: 20452322 NLM ISO Abbreviation: Sci Rep Subsets: MEDLINE
    • Publication Information:
      Original Publication: London : Nature Publishing Group, copyright 2011-
    • Subject Terms:
    • Abstract:
      During the cryopreservation of sperm, the production of highly reactive oxygen species (ROS) can reduce their viability and fertility. However, the addition of antioxidants can help reduce the harmful effects of ROS. One such antioxidant is selenium, which is a co-factor of the glutathione peroxidase enzyme that is effective in scavenging ROS. Cysteamine can also take part in the structure of this enzyme. The use of nanoparticles can be less toxic to cells than their salt form. To this end, researchers synthesized Se-NPs using the streptococcus bacteria and loaded cysteamine onto the synthesized Se-NPs. The biosynthesis of Se-NPs and cysteamine loaded on Se-NPs was confirmed by UV-visible spectroscopy, X-ray diffraction (EDX), Fourier transforms infrared (FTIR) spectroscopy, and Field Emission Scanning Electron Microscope (FE-SEM). For cryopreservation, ram semen samples were diluted, and different concentrations (0, 1, 5, 25, and 125 µg/mL) of cysteamine, Se-NPs, cysteamine loaded on Se-NPs, and sodium selenite were added. An extender containing no supplement was considered as control group. After cooling the semen samples, they were frozen and stored in liquid nitrogen for evaluation. The samples were thawed and analyzed for mobility, viability, membrane and DNA integrity, and sperm abnormalities, as well as malondialdehyde level (MDA) and superoxide dismutase (SOD). The data was processed using SPSS, and a significance level of p < 0.05 was considered. The results of this experiment showed that adding 1 μg/mL of cysteamine loaded on Se-NPs to the diluent significantly increased the motility, viability, and membrane integrity and SOD of spermatozoa compared to the other treatment groups and control group, and reduced the abnormality, apoptosis, and MDA level of spermatozoa in comparison with the other treatment groups and control group (p < 0.05). In conclusion, the addition of cysteamine loaded on Se-NPs was found to improve the quality of ram sperm after cryopreservation.
      (© 2024. The Author(s).)
    • References:
      Kaneko, T., Whittingham, D. G., Overstreet, J. W. & Yanagimachi, R. Tolerance of the mouse sperm nuclei to freeze-drying depends on their disulfide status. Biol. Reprod. 69, 1859–1862 (2003). (PMID: 1290432010.1095/biolreprod.103.019729)
      Barbas, J. P. & Mascarenhas, R. D. Cryopreservation of domestic animal sperm cells. Cell Tissue Bank 10, 49–62 (2009). (PMID: 1854833310.1007/s10561-008-9081-4)
      Sookhthezary, A., Vojgani, M. & Niassari-Naslaji, A. Evaluation of using melatonin implant in rams in non-breeding season on improvement of reproductive performance in the ewes. J. Vet. Res. 61, 181–185 (2006).
      Adams, N. R. Permanent infertility in ewes exposed to plant oestrogens. Aust. Vet. J. 67, 197–201 (1990). (PMID: 222236110.1111/j.1751-0813.1990.tb07758.x)
      Vishwanath, R. & Shannon, P. Storage of bovine semen in liquid and frozen state. Anim. Reprod. Sci. 62, 23–53 (2000). (PMID: 1092481910.1016/S0378-4320(00)00153-6)
      Bucak, M. N., Sarıözkan, S., Tuncer, P. B., Ulutaş, P. A. & Akçadağ, H. İ. Effect of antioxidants on microscopic semen parameters, lipid peroxidation and antioxidant activities in Angora goat semen following cryopreservation. Small Rumin. Res 81, 90–95 (2009). (PMID: 10.1016/j.smallrumres.2008.11.011)
      Agarwal, A., Nallella, K. P., Allamaneni, S. S. & Said, T. M. Role of antioxidants in treatment of male infertility: An overview of the literature. Reprod. Biomed. Online 8, 616–627 (2004). (PMID: 1516957310.1016/S1472-6483(10)61641-0)
      Lewis, S. E., Sterling, E. S. L., Young, I. S. & Thompson, W. Comparison of individual antioxidants of sperm and seminal plasma in fertile and infertile men. Fertil. Steril. 67, 142–147 (1997). (PMID: 898669910.1016/S0015-0282(97)81871-7)
      Barati, E., Nikzad, H. & Karimian, M. Oxidative stress and male infertility: Current knowledge of pathophysiology and role of antioxidant therapy in disease management. Cell. Mol. Life Sci 77, 93–113 (2020). (PMID: 3137784310.1007/s00018-019-03253-8)
      Garrido, N., Meseguer, M., Simon, C., Pellicer, A. & Remohi, J. Pro-oxidative and anti-oxidative imbalance in human semen and its relation with male fertility. Asian J. Androl. 6, 59–65 (2004). (PMID: 15064836)
      Pelyhe, C. & Mézes, M. Myths and facts about the effects of nano selenium in farm animals–mini-review. Eur. Chem. Bull. 2, 1049–1052 (2013).
      Radostits, O. M., Gay, C., Hinchcliff, K. W. & Constable, P. D. Veterinary Medicine E-Book: A textbook of the diseases of cattle, horses, sheep, pigs and goats. Health Sci. 20, 2 (2006).
      Crisol, L. et al. Glutathione peroxidase activity in seminal plasma and its relationship to classical sperm parameters and in vitro fertilization-intracytoplasmic sperm injection outcome. Fertil. Steril. 97, 852–857 (2012). (PMID: 2229682310.1016/j.fertnstert.2012.01.097)
      Tórtora-Pérez, J. L. The importance of selenium and the effects of its deficiency in animal health. Small Rumin. Res. 89, 185–192 (2010). (PMID: 10.1016/j.smallrumres.2009.12.042)
      Burk, R. F., Hill, K. E. & Motley, A. K. Selenoprotein metabolism and function: Evidence for more than one function for selenoprotein P. J. Nutr. 133, 1517S-1520S (2003). (PMID: 1273045610.1093/jn/133.5.1517S)
      Tarze, A. et al. Extracellular production of hydrogen selenide accounts for thiol-assisted toxicity of selenite against Saccharomyces cerevisiae. J. Biol. Chem. 282, 8759–8767 (2007). (PMID: 1726158710.1074/jbc.M610078200)
      Adedara, I. A., Abiola, M. A., Adegbosin, A. N., Odunewu, A. A. & Farombi, E. O. Impact of binary waterborne mixtures of nickel and zinc on hypothalamic-pituitary-testicular axis in rats. Chemosphere 237, 124501 (2019). (PMID: 3139861210.1016/j.chemosphere.2019.124501)
      Safa, S., Moghaddam, G., Jozani, R. J., Kia, H. D. & Janmohammadi, H. Effect of vitamin E and selenium nanoparticles on post-thaw variables and oxidative status of rooster semen. Anim. Reprod. Sci. 174, 100–106 (2016). (PMID: 2766001410.1016/j.anireprosci.2016.09.011)
      Wadhwani, S. A., Shedbalkar, U. U., Singh, R. & Chopade, B. A. Biogenic selenium nanoparticles: Current status and future prospects. Appl. Microbiol. Biotechnol. 100, 2555–2566 (2016). (PMID: 2680191510.1007/s00253-016-7300-7)
      Mishra, R. R. et al. Reduction of selenite to red elemental selenium by moderately halotolerant Bacillus megaterium strains isolated from Bhitarkanika mangrove soil and characterization of reduced product. Chemosphere 84, 1231–1237 (2011). (PMID: 2166464310.1016/j.chemosphere.2011.05.025)
      Ramamurthy, C. H. et al. Green synthesis and characterization of selenium nanoparticles and its augmented cytotoxicity with doxorubicin on cancer cells. Bioprocess Biosyst. Eng. 36, 1131–1139 (2013). (PMID: 2344677610.1007/s00449-012-0867-1)
      Li, S. et al. Glutathione and selenium nanoparticles have a synergistic protective effect during cryopreservation of bull semen. Front. Vet. Sci. 10, 1093274 (2023). (PMID: 36876009997839710.3389/fvets.2023.1093274)
      Khalil, W. A., El-Harairy, M. A., Zeidan, A. E. & Hassan, M. A. Impact of selenium nano-particles in semen extender on bull sperm quality after cryopreservation. Theriogenology 126, 121–127 (2019). (PMID: 3055101810.1016/j.theriogenology.2018.12.017)
      Atallah, C., Charcosset, C. & Greige-Gerges, H. Challenges for cysteamine stabilization, quantification, and biological effects improvement. J. Pharm. Anal. 10, 499–516 (2020). (PMID: 33425447777585410.1016/j.jpha.2020.03.007)
      Almasi, S., Rezvanjoo, B., Shirazibeheshtiha, S. H., Namvaran AbbasAbad, A. & Khosravi, M. Protective effect of coenzyme Q10 and vitamin c on cysteamine induced lipid peroxidation. J. Vet. Clin. Res. 5, 21–29 (2014).
      Behmanesh, M. A., Janati, S., Ghorbanzadeh, B., Baniasadian, A. & Poormoosavi, S. M. Cysteamine mitigates the deleterious impact of cryopreservation on sperm parameters. NU Mon. 15, 25 (2023).
      Najafi, A. et al. Different concentrations of cysteamine and ergothioneine improve microscopic and oxidative parameters in ram semen frozen with a soybean lecithin extender. Cryobiology 69, 68–73 (2014). (PMID: 2485486810.1016/j.cryobiol.2014.05.004)
      Yang, Z. et al. Structure, stability, antioxidant activity, and controlled-release of selenium nanoparticles decorated with lichenan from Usnea longissima. Carbohydr. Polym. 299, 120219 (2023). (PMID: 3687682010.1016/j.carbpol.2022.120219)
      Ghasemi, M., Turnbull, T., Sebastian, S. & Kempson, I. The MTT assay: Utility, limitations, pitfalls, and interpretation in bulk and single-cell analysis. Int. J. Mol. Sci. 22, 12827 (2021). (PMID: 34884632865753810.3390/ijms222312827)
      Mohammadi, T. & Soltani, L. Effects of hydroethanolic extracts of Terminalia chebula and Thymbra spicata on ram fresh semen under normal and oxidative stress conditions. Vet. Med. Sci. 7, 1778–1785 (2021). (PMID: 34288575846428910.1002/vms3.580)
      Zhao, L. L. et al. Reproductive effects of cadmium on sperm function and early embryonic development in vitro. PLoS One 12, e0186727 (2017). (PMID: 29095856566774710.1371/journal.pone.0186727)
      Moradi, M., Hajarian, H., Karamishabankareh, H., Soltani, L. & Soleymani, B. Pre-treatment of ram semen extender with magnetic nanoparticles on freeze-thawed spermatozoa. Vet. Med. Sci. 8, 792–798 (2022). (PMID: 3491419910.1002/vms3.689)
      Schäfer, S. & Holzmann, A. The use of transmigration and Spermac™ stain to evaluate epididymal cat spermatozoa. Anim. Reprod. Sci. 59, 201–211 (2000). (PMID: 1083798010.1016/S0378-4320(00)00073-7)
      Zhu, Z. et al. Vitamin E analogue improves rabbit sperm quality during the process of cryopreservation through its antioxidative action. PLoS One 10, e0145383 (2015). (PMID: 26700473468947810.1371/journal.pone.0145383)
      Wang, H. et al. Prooxidation and cytotoxicity of selenium nanoparticles at nonlethal level in Sprague–Dawley rats and buffalo rat liver cells. Oxid. Med. Cell. Longev. 20, 20 (2020).
      Kumar, C. G. & Poornachandra, Y. Biodirected synthesis of Miconazole-conjugated bacterial silver nanoparticles and their application as antifungal agents and drug delivery vehicles. Colloids Surf. B 125, 110–119 (2015). (PMID: 10.1016/j.colsurfb.2014.11.025)
      Shoeibi, S. & Mashreghi, M. Biosynthesis of selenium nanoparticles using Enterococcus faecalis and evaluation of their antibacterial activities. J. Trace Elem. Med. Biol. 39, 135–139 (2017). (PMID: 2790840510.1016/j.jtemb.2016.09.003)
      Borah, S. N. et al. Selenite bioreduction and biosynthesis of selenium nanoparticles by Bacillus paramycoides SP3 isolated from coal mine overburden leachate. Environ. Pollut. 285, 117519 (2021). (PMID: 3438022010.1016/j.envpol.2021.117519)
      Soltani, L. & Darbemamieh, M. Anti-proliferative, apoptotic potential of synthesized selenium nanoparticles against breast cancer cell line (MCF7). Nucleosides Nucleotides Nucleic Acids 40, 926–941 (2021). (PMID: 3439690810.1080/15257770.2021.1964526)
      Jafarirad, S., Rasoulpour, I., Divband, B., Hammami Torghabe, I. & Kosari-Nasab, M. Innovative biocapped CuO nano-photocatalysts: A rapid and green method for photocatalytic degradation of 4-nitrophenol. Mater. Res. Innov. 22, 415–421 (2018).
      Dobias, J., Suvorova, E. I. & Bernier-Latmani, R. Role of proteins in controlling selenium nanoparticle size. Nanotechnology 22, 195605 (2011). (PMID: 2143031110.1088/0957-4484/22/19/195605)
      Dorostkar, K., Alavi-Shoushtari, S. M. & Mokarizadeh, A. Effects of in vitro selenium addition to the semen extender on the spermatozoa characteristics before and after freezing in water buffaloes (Bubalus bubalis). Vet. Res. Forum. 3, 263 (2012). (PMID: 256537694313046)
      Nasri, S., Amidi, F. & Rezaeian Movahed, Z. Effect of selenium on the motility, morphology and viability of sperm cells after freezing and thawing procedure. J. Inflamm. Res. 18, 11–17 (2014).
      Kamrani, N., Karimi, A. & Sheikhlou, M. R. Effects of extrinsic selenium nanoparticles on the qualitative parameters of frozen-thawed sperm of broiler breeder roosters under oxidative stress conditions. Res. Anim. Prod. 12, 51–59 (2021). (PMID: 10.52547/rap.12.31.51)
      Khoram Abadi, F., Khodaei Motlagh, M. & Moradi, M. H. Effect of in vitro selenium nanoparticles addition to the semen extender on the spermatozoa parameters after freezing in Farahani ram. J. Anim. Res. 30, 25 (2017).
      Kaushal, N. & Bansal, M. P. Dietary selenium variation-induced oxidative stress modulates CDC2/cyclin B1 expression and apoptosis of germ cells in mice testis. J. Nutr. Biochem. 18, 553–564 (2007). (PMID: 1732036510.1016/j.jnutbio.2006.11.003)
      Lukusa, K., Hassen, A. & Lehloenya, K. C. Dietary selenium supplementation, clarified egg yolk extender and slow cooling improve cryopreserved sperm characteristics of Saanen buck. Asian Pac. J. Reprod. 10, 43–48 (2021). (PMID: 10.4103/2305-0500.306437)
      Nateq, S., Moghaddam, G., Alijani, S. & Behnam, M. The effects of different levels of Nano selenium on the quality of frozen-thawed sperm in ram. J. Appl. Anim. Res. 48, 434–439 (2020). (PMID: 10.1080/09712119.2020.1816549)
      Huang, Y. L., Tseng, W. C., Cheng, S. Y. & Lin, T. H. Trace elements and lipid peroxidation in human seminal plasma. Biol. Trace Elem. Res. 76, 207–215 (2000). (PMID: 1104921910.1385/BTER:76:3:207)
      Carlson, B. A. et al. Selenoproteins regulate macrophage invasiveness and extracellular matrix-related gene expression. BMC Immunol. 10, 1–12 (2009). (PMID: 10.1186/1471-2172-10-57)
      Ursini, F. et al. Dual function of the selenoprotein PHGPx during sperm maturation. Science 285, 1393–1396 (1999). (PMID: 1046409610.1126/science.285.5432.1393)
      Eidi, M. et al. Effect of seminal plasma selenium concentration on semen parameters. Med. Sci. J. Islamic Azad Univ. Tehran Med. Branch 17, 81–86 (2007).
      Abdollahi, Z., Masoudi, R. & Dadashpour Davachi, N. Effect of cysteamine antioxidant on cellular parameters and frozen sperm quality in ram. Vet. Res. Bio Prod. 33, 83–88 (2020).
      Sikka, S. C. Oxidative stress and role of antioxidants in normal and abnormal sperm function. Front. Biosci. 1, e78-86 (1996). (PMID: 915924810.2741/A146)
      Hozyen, H. F., El-Shamy, A. A. & Farghali, A. A. In vitro supplementation of nano selenium minimizes freeze-thaw induced damage to ram spermatozoa. Int. J. Vet. Sci. 8, 249–254 (2019).
      Brigelius-Flohé, R. & Flohé, L. Regulatory phenomena in the glutathione peroxidase superfamily. Antioxid. Redox Signal. 33, 498–516 (2020). (PMID: 3182211710.1089/ars.2019.7905)
      Mohammadi, S. et al. Effects of Vitamin-E treatment on CatSper genes expression and sperm quality in the testis of the aging mouse. Iran. J. Reprod. Med. 11(12), 989 (2013). (PMID: 246397253941406)
      Sarıözkan, S., Bucak, M. N., Tuncer, P. B., Ulutaş, P. A. & Bilgen, A. The influence of cysteine and taurine on microscopic–oxidative stress parameters and fertilizing ability of bull semen following cryopreservation. Cryobiology 58, 134–138 (2009). (PMID: 1907061310.1016/j.cryobiol.2008.11.006)
      Bucak, M. N. et al. The influence of trehalose, taurine, cysteamine and hyaluronan on ram semen: Microscopic and oxidative stress parameters after freeze–thawing process. Theriogenology 67, 1060–1067 (2007). (PMID: 1728071110.1016/j.theriogenology.2006.12.004)
      Uysal, O. & Bucak, M. N. Effects of oxidized glutathione, bovine serum albumin, cysteine and lycopene on the quality of frozen-thawed ram semen. Acta Vet. Brno 76, 383–390 (2007). (PMID: 10.2754/avb200776030383)
      Partyka, A., Niżański, W., Bajzert, J., Łukaszewicz, E. & Ochota, M. The effect of cysteine and superoxide dismutase on the quality of post-thawed chicken sperm. Cryobiology 67, 132–136 (2013). (PMID: 2377051610.1016/j.cryobiol.2013.06.002)
      Funahashi, H. & Sano, T. Select antioxidants improve the function of extended boar semen stored at 10 C. Theriogenology 63, 1605–1616 (2005). (PMID: 1576310510.1016/j.theriogenology.2004.06.016)
      Besouw, M., Masereeuw, R., van den Heuvel, L. & Levtchenko, E. Cysteamine : An old drug with new potential. Drug Discov. Today 18, 785–792 (2013). (PMID: 2341614410.1016/j.drudis.2013.02.003)
    • Accession Number:
      HIW548RQ3W (Sodium Selenite)
      5UX2SD1KE2 (Cysteamine)
      0 (Reactive Oxygen Species)
      0 (Antioxidants)
      EC 1.15.1.1 (Superoxide Dismutase)
    • Publication Date:
      Date Created: 20240109 Date Completed: 20240110 Latest Revision: 20240112
    • Publication Date:
      20240113
    • Accession Number:
      PMC10774310
    • Accession Number:
      10.1038/s41598-023-50221-1
    • Accession Number:
      38191898