Item request has been placed!
×
Item request cannot be made.
×
Processing Request
A unifying model that explains the origins of human inverted copy number variants.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Additional Information
- Source:
Publisher: Public Library of Science Country of Publication: United States NLM ID: 101239074 Publication Model: eCollection Cited Medium: Internet ISSN: 1553-7404 (Electronic) Linking ISSN: 15537390 NLM ISO Abbreviation: PLoS Genet Subsets: MEDLINE
- Publication Information:
Original Publication: San Francisco, CA : Public Library of Science, c2005-
- Subject Terms:
- Abstract:
With the release of the telomere-to-telomere human genome sequence and the availability of both long-read sequencing and optical genome mapping techniques, the identification of copy number variants (CNVs) and other structural variants is providing new insights into human genetic disease. Different mechanisms have been proposed to account for the novel junctions in these complex architectures, including aberrant forms of DNA replication, non-allelic homologous recombination, and various pathways that repair DNA breaks. Here, we have focused on a set of structural variants that include an inverted segment and propose that they share a common initiating event: an inverted triplication with long, unstable palindromic junctions. The secondary rearrangement of these palindromes gives rise to the various forms of inverted structural variants. We postulate that this same mechanism (ODIRA: origin-dependent inverted-repeat amplification) that creates the inverted CNVs in inherited syndromes also generates the palindromes found in cancers.
Competing Interests: The authors have declared that no competing interests exist.
(Copyright: © 2024 Brewer et al. This is an open access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.)
- References:
J Med Genet. 1999 Mar;36(3):242-5. (PMID: 10204854)
Haemophilia. 2022 Jan;28(1):117-124. (PMID: 34480810)
Mol Cytogenet. 2022 Jun 14;15(1):23. (PMID: 35701783)
PLoS Genet. 2006 Apr;2(4):e48. (PMID: 16604155)
Hum Genome Var. 2020 Nov 20;7(1):40. (PMID: 33298903)
Sci Rep. 2017 Feb 17;7:41921. (PMID: 28211519)
PLoS Genet. 2015 Mar 06;11(3):e1005050. (PMID: 25749076)
Int J Mol Sci. 2021 Mar 11;22(6):. (PMID: 33799581)
Trends Genet. 2009 Jul;25(7):298-307. (PMID: 19560228)
Genome Biol. 2022 Mar 3;23(1):68. (PMID: 35241127)
Genome Res. 2021 Aug;31(8):1337-1352. (PMID: 34290043)
Nat Rev Mol Cell Biol. 2010 Mar;11(3):182-95. (PMID: 20164840)
Mol Cell. 2014 Aug 21;55(4):615-25. (PMID: 25066232)
Mol Cell Biol. 2003 Dec;23(23):8740-50. (PMID: 14612414)
Mol Genet Genomic Med. 2020 Sep;8(9):e1390. (PMID: 32627361)
Mol Cell Biol. 1996 May;16(5):2164-73. (PMID: 8628283)
PLoS Biol. 2018 Dec 18;16(12):e3000069. (PMID: 30562346)
Mol Cell Biol. 2003 Dec;23(23):8820-8. (PMID: 14612421)
Eur J Med Genet. 2020 Nov;63(11):104044. (PMID: 32861809)
Genome Med. 2019 Apr 23;11(1):25. (PMID: 31014393)
Nat Genet. 2011 Oct 02;43(11):1074-81. (PMID: 21964572)
Hum Cell. 2006 Feb;19(1):17-23. (PMID: 16643603)
PLoS Genet. 2009 Jan;5(1):e1000327. (PMID: 19180184)
Mol Cell Biol. 1997 Sep;17(9):5559-70. (PMID: 9271431)
Front Genet. 2020 Jul 06;11:616. (PMID: 32733533)
Hum Genet. 2020 Nov;139(11):1417-1427. (PMID: 32488466)
Am J Hum Genet. 2021 Aug 5;108(8):1409-1422. (PMID: 34237280)
J Med Genet. 2001 Jan;38(1):26-34. (PMID: 11134237)
DNA Repair (Amst). 2020 Jun;90:102848. (PMID: 32388488)
Eur J Med Genet. 2012 Jun;55(6-7):400-3. (PMID: 22490426)
Haemophilia. 2023 Jul;29(4):1121-1134. (PMID: 37192522)
Genetics. 1998 Apr;148(4):1507-24. (PMID: 9560370)
Eur J Med Genet. 2021 Dec;64(12):104367. (PMID: 34678473)
PLoS Genet. 2008 Jul 18;4(7):e1000132. (PMID: 18636108)
Genome Biol. 2019 Nov 20;20(1):246. (PMID: 31747936)
Commun Biol. 2023 Sep 19;6(1):954. (PMID: 37726397)
J Hum Genet. 2023 Nov;68(11):751-757. (PMID: 37423943)
Am J Med Genet A. 2022 May;188(5):1589-1594. (PMID: 35122461)
Cell. 2007 Dec 28;131(7):1235-47. (PMID: 18160035)
PLoS Genet. 2024 Jan 4;20(1):e1010850. (PMID: 38175823)
PLoS Genet. 2011 Mar;7(3):e1002016. (PMID: 21437266)
Hum Genet. 2012 Dec;131(12):1895-910. (PMID: 22890305)
Mol Cytogenet. 2017 Apr 28;10:15. (PMID: 28465723)
J Vis Exp. 2013 Feb 23;(72):e50262. (PMID: 23462663)
Mol Cell. 2015 Dec 17;60(6):860-72. (PMID: 26669261)
Cytogenet Genome Res. 2009;124(2):179-86. (PMID: 19420931)
PLoS Genet. 2015 Dec 23;11(12):e1005699. (PMID: 26700858)
Trends Genet. 2022 Nov;38(11):1134-1146. (PMID: 35820967)
Nucleic Acids Res. 2020 May 21;48(9):4940-4945. (PMID: 32255181)
Genetics. 1941 Mar;26(2):234-82. (PMID: 17247004)
Genome Res. 2012 Feb;22(2):232-45. (PMID: 21752925)
J Mol Diagn. 2022 Jun;24(6):619-631. (PMID: 35398599)
Methods Mol Biol. 2023;2660:13-22. (PMID: 37191787)
- Grant Information:
R01 GM018926 United States GM NIGMS NIH HHS; R01 GM147040 United States GM NIGMS NIH HHS; R35 GM122497 United States GM NIGMS NIH HHS
- Publication Date:
Date Created: 20240104 Date Completed: 20240108 Latest Revision: 20241019
- Publication Date:
20241019
- Accession Number:
PMC10766186
- Accession Number:
10.1371/journal.pgen.1011091
- Accession Number:
38175827
No Comments.