Menu
×
John's Island Library
9 a.m. - 8 p.m.
Phone: (843) 559-1945
Main Library
9 a.m. - 8 p.m.
Phone: (843) 805-6930
West Ashley Library
9 a.m. - 7 p.m.
Phone: (843) 766-6635
Wando Mount Pleasant Library
9 a.m. - 8 p.m.
Phone: (843) 805-6888
Village Library
9 a.m. - 6 p.m.
Phone: (843) 884-9741
St. Paul's/Hollywood Library
9 a.m. - 8 p.m.
Phone: (843) 889-3300
Otranto Road Library
9 a.m. - 8 p.m.
Phone: (843) 572-4094
Mt. Pleasant Library
9 a.m. - 8 p.m.
Phone: (843) 849-6161
McClellanville Library
9 a.m. - 6 p.m.
Phone: (843) 887-3699
Keith Summey North Charleston Library
9 a.m. - 8 p.m.
Phone: (843) 744-2489
Hurd/St. Andrews Library
9 a.m. - 8 p.m.
Phone: (843) 766-2546
Folly Beach Library
9 a.m. - 5:30 p.m.
Phone: (843) 588-2001
Edisto Island Library
9 a.m. - 4 p.m.
Phone: (843) 869-2355
Dorchester Road Library
9 a.m. - 8 p.m.
Phone: (843) 552-6466
John L. Dart Library
9 a.m. - 7 p.m.
Phone: (843) 722-7550
Baxter-Patrick James Island
9 a.m. - 8 p.m.
Phone: (843) 795-6679
Bees Ferry West Ashley Library
9 a.m. - 8 p.m.
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
9 a.m. - 5 p.m.
Phone: (843) 805-6909
Today's Hours
John's Island Library
9 a.m. - 8 p.m.
Phone: (843) 559-1945
Main Library
9 a.m. - 8 p.m.
Phone: (843) 805-6930
West Ashley Library
9 a.m. - 7 p.m.
Phone: (843) 766-6635
Wando Mount Pleasant Library
9 a.m. - 8 p.m.
Phone: (843) 805-6888
Village Library
9 a.m. - 6 p.m.
Phone: (843) 884-9741
St. Paul's/Hollywood Library
9 a.m. - 8 p.m.
Phone: (843) 889-3300
Otranto Road Library
9 a.m. - 8 p.m.
Phone: (843) 572-4094
Mt. Pleasant Library
9 a.m. - 8 p.m.
Phone: (843) 849-6161
McClellanville Library
9 a.m. - 6 p.m.
Phone: (843) 887-3699
Keith Summey North Charleston Library
9 a.m. - 8 p.m.
Phone: (843) 744-2489
Hurd/St. Andrews Library
9 a.m. - 8 p.m.
Phone: (843) 766-2546
Folly Beach Library
9 a.m. - 5:30 p.m.
Phone: (843) 588-2001
Edisto Island Library
9 a.m. - 4 p.m.
Phone: (843) 869-2355
Dorchester Road Library
9 a.m. - 8 p.m.
Phone: (843) 552-6466
John L. Dart Library
9 a.m. - 7 p.m.
Phone: (843) 722-7550
Baxter-Patrick James Island
9 a.m. - 8 p.m.
Phone: (843) 795-6679
Bees Ferry West Ashley Library
9 a.m. - 8 p.m.
Phone: (843) 805-6892
Edgar Allan Poe/Sullivan's Island Library
Closed for renovations
Phone: (843) 883-3914
Mobile Library
9 a.m. - 5 p.m.
Phone: (843) 805-6909
Patron Login
menu
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
Role of folic acid in regulating gut microbiota and short-chain fatty acids based on an in vitro fermentation model.
Item request has been placed!
×
Item request cannot be made.
×
Processing Request
- Author(s): Zheng X;Zheng X; Xia C; Xia C; Liu M; Liu M; Wu H; Wu H; Yan J; Yan J; Zhang Z; Zhang Z; Huang Y; Huang Y; Gu Q; Gu Q; Li P; Li P
- Source:
Applied microbiology and biotechnology [Appl Microbiol Biotechnol] 2024 Dec; Vol. 108 (1), pp. 40. Date of Electronic Publication: 2024 Jan 04.- Publication Type:
Journal Article- Language:
English - Source:
- Additional Information
- Source: Publisher: Springer International Country of Publication: Germany NLM ID: 8406612 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-0614 (Electronic) Linking ISSN: 01757598 NLM ISO Abbreviation: Appl Microbiol Biotechnol Subsets: MEDLINE
- Publication Information: Original Publication: Berlin ; New York : Springer International, c1984-
- Subject Terms:
- Abstract: Folic acid deficiency is common worldwide and is linked to an imbalance in gut microbiota. However, based on model animals used to study the utilization of folic acid by gut microbes, there are challenges of reproducibility and individual differences. In this study, an in vitro fecal slurry culture model of folic acid deficiency was established to investigate the effects of supplementation with 5-methyltetrahydrofolate (MTHF) and non-reduced folic acid (FA) on the modulation of gut microbiota. 16S rRNA sequencing results revealed that both FA (29.7%) and MTHF (27.9%) supplementation significantly reduced the relative abundance of Bacteroidetes compared with control case (34.3%). MTHF supplementation significantly improved the relative abundance of Firmicutes by 4.49%. Notably, compared with the control case, FA and MTHF supplementation promoted an increase in fecal levels of Lactobacillus, Bifidobacterium, and Pediococcus. Short-chain fatty acid (SCFA) analysis showed that folic acid supplementation decreased acetate levels and increased fermentative production of isobutyric acid. The in vitro fecal slurry culture model developed in this study can be utilized as a model of folic acid deficiency in humans to study the gut microbiota and demonstrate that exogenous folic acid affects the composition of the gut microbiota and the level of SCFAs. KEY POINTS: • Establishment of folic acid deficiency in an in vitro culture model. • Folic acid supplementation regulates intestinal microbes and SCFAs. • Connections between microbes and SCFAs after adding folic acid are built.
(© 2024. The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature.) - References: Alam C, Kondo M, O’Connor DL, Bendayan R (2020) Clinical implications of iolate transport in the central nervous system. Trends Pharmacol Sci 41:349–361. https://doi.org/10.1016/j.tips.2020.02.004. (PMID: 10.1016/j.tips.2020.02.00432200980)
Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith GA, Alexander H, Alm EJ, Arumugam M, Asnicar F, Bai Y, Bisanz JE, Bittinger K, Brejnrod A, Brislawn CJ, Brown CT, Callahan BJ, Caraballo-Rodríguez AM, Chase J, Cope EK, Da Silva R, Diener C, Dorrestein PC, Douglas GM, Durall DM, Duvallet C, Edwardson CF, Ernst M, Estaki M, Fouquier J, Gauglitz JM, Gibbons SM, Gibson DL, Gonzalez A, Gorlick K, Guo J, Hillmann B, Holmes S, Holste H, Huttenhower C, Huttley GA, Janssen S, Jarmusch AK, Jiang L, Kaehler BD, Kang KB, Keefe CR, Keim P, Kelley ST, Knights D, Koester I, Kosciolek T, Kreps J, Langille MGI, Lee J, Ley R, Liu Y-X, Loftfield E, Lozupone C, Maher M, Marotz C, Martin BD, McDonald D, McIver LJ, Melnik AV, Metcalf JL, Morgan SC, Morton JT, Naimey AT, Navas-Molina JA, Nothias LF, Orchanian SB, Pearson T, Peoples SL, Petras D, Preuss ML, Pruesse E, Rasmussen LB, Rivers A, Robeson MS, Rosenthal P, Segata N, Shaffer M, Shiffer A, Sinha R, Song SJ, Spear JR, Swafford AD, Thompson LR, Torres PJ, Trinh P, Tripathi A, Turnbaugh PJ, Ul-Hasan S, van der Hooft JJJ, Vargas F, Vázquez-Baeza Y, Vogtmann E, von Hippel M, Walters W, Wan Y, Wang M, Warren J, Weber KC, Williamson CHD, Willis AD, Xu ZZ, Zaneveld JR, Zhang Y, Zhu Q, Knight R, Caporaso JG (2019) Reproducible, interactive, scalable and extensible microbiome data science using QIIME 2. Nat Biotechnol 37:852–857. https://doi.org/10.1038/s41587-019-0209-9. (PMID: 10.1038/s41587-019-0209-9313412887015180)
Browne HP, Forster SC, Anonye BO, Kumar N, Neville BA, Stares MD, Goulding D, Lawley TD (2016) Culturing of “unculturable” human microbiota reveals novel taxa and extensive sporulation. Nature 533:543–546. https://doi.org/10.1038/nature17645. (PMID: 10.1038/nature17645271443534890681)
Callahan BJ, McMurdie PJ, Rosen MJ, Han AW, Johnson AJA, Holmes SP (2016) DADA2: high-resolution sample inference from Illumina amplicon data. Nat Methods 13:581–583. https://doi.org/10.1038/nmeth.3869. (PMID: 10.1038/nmeth.3869272140474927377)
Chen M-Y, Rose CE, Qi YP, Williams JL, Yeung LF, Berry RJ, Hao L, Cannon MJ, Crider KS (2019) Defining the plasma folate concentration associated with the red blood cell folate concentration threshold for optimal neural tube defects prevention: a population-based, randomized trial of folic acid supplementation. Am J Clin Nutr 109:1452–1461. https://doi.org/10.1093/ajcn/nqz027. (PMID: 10.1093/ajcn/nqz02731005964)
Cheng X, Pi Z, Zheng Z, Liu S, Song F, Liu Z (2022) Combined 16S rRNA gene sequencing and metabolomics to investigate the protective effects of Wu-tou decoction on rheumatoid arthritis in rats. J Chromatogr B Analyt Technol Biomed Life Sci 1199:123249. https://doi.org/10.1016/j.jchromb.2022.123249. (PMID: 10.1016/j.jchromb.2022.12324935447521)
Ciobârcă D, Cătoi AF, Copăescu C, Miere D, Crișan G (2020) Bariatric surgery in obesity: effects on gut microbiota and micronutrient status. Nutrients 12:235. https://doi.org/10.3390/nu12010235. (PMID: 10.3390/nu12010235319632477019602)
Degnan PH, Taga ME, Goodman AL (2014) Vitamin B12 as a modulator of gut microbial ecology. Cell Metab 20:769–778. https://doi.org/10.1016/j.cmet.2014.10.002. (PMID: 10.1016/j.cmet.2014.10.002254400564260394)
Duncan SH, Barcenilla A, Stewart CS, Pryde SE, Flint HJ (2002) Acetate utilization and butyryl coenzyme A (CoA):acetate-CoA transferase in butyrate-producing bacteria from the human large intestine. Appl Environ Microbiol 68:5186–5190. https://doi.org/10.1128/AEM.68.10.5186-5190.2002. (PMID: 10.1128/AEM.68.10.5186-5190.200212324374126392)
Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461. https://doi.org/10.1093/bioinformatics/btq461. (PMID: 10.1093/bioinformatics/btq46120709691)
Fu Y, Zhang J, Chen K, Xiao C, Fan L, Zhang B, Ren J, Fang B (2019) An in vitro fermentation study on the effects of Dendrobium officinale polysaccharides on human intestinal microbiota from fecal microbiota transplantation donors. J Funct Food 53:44–53. https://doi.org/10.1016/j.jff.2018.12.005. (PMID: 10.1016/j.jff.2018.12.005)
Gevers D, Kugathasan S, Denson LA, Vázquez-Baeza Y, Van Treuren W, Ren B, Schwager E, Knights D, Song SJ, Yassour M, Morgan XC, Kostic AD, Luo C, González A, McDonald D, Haberman Y, Walters T, Baker S, Rosh J, Stephens M, Heyman M, Markowitz J, Baldassano R, Griffiths A, Sylvester F, Mack D, Kim S, Crandall W, Hyams J, Huttenhower C, Knight R, Xavier RJ (2014) The treatment-naive microbiome in new-onset Crohn’s disease. Cell Host Microbe 15:382–392. https://doi.org/10.1016/j.chom.2014.02.005. (PMID: 10.1016/j.chom.2014.02.005246293444059512)
Granado-Serrano AB, Martín-Garí M, Sánchez V, Riart Solans M, Berdún R, Ludwig IA, Rubió L, Vilaprinyó E, Portero-Otín M, Serrano JCE (2019) Faecal bacterial and short-chain fatty acids signature in hypercholesterolemia. Sci Rep 9:1772. https://doi.org/10.1038/s41598-019-38874-3. (PMID: 10.1038/s41598-019-38874-3307420056370822)
Gurwara S, Ajami NJ, Jang A, Hessel FC, Chen L, Plew S, Wang Z, Graham DY, Hair C, White DL, Kramer J, Kourkoumpetis T, Hoffman K, Cole R, Hou J, Husain N, Jarbrink-Sehgal M, Hernaez R, Kanwal F, Ketwaroo G, Shah R, Velez M, Natarajan Y, El-Serag HB, Petrosino JF, Jiao L (2019) Dietary nutrients involved in one-carbon metabolism and colonic mucosa-associated gut microbiome in individuals with an endoscopically normal colon. Nutrients 11:613. https://doi.org/10.3390/nu11030613. (PMID: 10.3390/nu11030613308712246470629)
Hang S, Zeng L, Han J, Zhang Z, Zhou Q, Meng X, Gu Q, Li P (2022) Lactobacillus plantarum ZJ316 improves the quality of Stachys sieboldii Miq. pickle by inhibiting harmful bacteria growth, degrading nitrite and promoting the gut microbiota health in vitro. Food Funct 13:1551–1562. https://doi.org/10.1039/d1fo03025f. (PMID: 10.1039/d1fo03025f35072202)
Hetzel M, Brock M, Selmer T, Pierik AJ, Golding BT, Buckel W (2003) Acryloyl-CoA reductase from Clostridium propionicum. An enzyme complex of propionyl-CoA dehydrogenase and electron-transferring flavoprotein. Eur J Biochem 270:902–910. https://doi.org/10.1046/j.1432-1033.2003.03450.x. (PMID: 10.1046/j.1432-1033.2003.03450.x12603323)
Hezaveh K, Shinde RS, Klötgen A, Halaby MJ, Lamorte S, Ciudad MT, Quevedo R, Neufeld L, Liu ZQ, Jin R, Grünwald BT, Foerster EG, Chaharlangi D, Guo M, Makhijani P, Zhang X, Pugh TJ, Pinto DM, Co IL, McGuigan AP, Jang GH, Khokha R, Ohashi PS, O’Kane GM, Gallinger S, Navarre WW, Maughan H, Philpott DJ, Brooks DG, McGaha TL (2022) Tryptophan-derived microbial metabolites activate the aryl hydrocarbon receptor in tumor-associated macrophages to suppress anti-tumor immunity. Immunity 55:324-340.e8. https://doi.org/10.1016/j.immuni.2022.01.006. (PMID: 10.1016/j.immuni.2022.01.006351393538888129)
Higashikawa F, Noda M, Awaya T, Danshiitsoodol N, Matoba Y, Kumagai T, Sugiyama M (2016) Antiobesity effect of Pediococcus pentosaceus LP28 on overweight subjects: a randomized, double-blind, placebo-controlled clinical trial. Eur J Clin Nutr 70:582–587. https://doi.org/10.1038/ejcn.2016.17. (PMID: 10.1038/ejcn.2016.1726956126)
Ilavenil S, Vijayakumar M, Kim DH, Valan Arasu M, Park HS, Ravikumar S, Choi KC (2016) Assessment of probiotic, antifungal and cholesterol lowering properties of Pediococcus pentosaceus KCC-23 isolated from Italian ryegrass. J Sci Food Agric 96:593–601. https://doi.org/10.1002/jsfa.7128. (PMID: 10.1002/jsfa.712825655225)
Iljazovic A, Amend L, Galvez EJC, de Oliveira R, Strowig T (2021) Modulation of inflammatory responses by gastrointestinal Prevotella spp. - From associations to functional studies. Int J Med Microbiol 311:151472. https://doi.org/10.1016/j.ijmm.2021.151472.
Jiao W, Wang S, Guan J, Shi J, Evivie SE, Yan F, Li N, Chen J, Li B, Huo G (2020) Milk fermented with Lactococcus lactis KLDS4.0325 alleviates folate status in deficient mice. Food Funct 11:4571–4581. https://doi.org/10.1039/c9fo03067k. (PMID: 10.1039/c9fo03067k32400792)
Langille MGI, Zaneveld J, Caporaso JG, McDonald D, Knights D, Reyes JA, Clemente JC, Burkepile DE, Vega Thurber RL, Knight R, Beiko RG, Huttenhower C (2013) Predictive functional profiling of microbial communities using 16S rRNA marker gene sequences. Nat Biotechnol 31:814–821. https://doi.org/10.1038/nbt.2676. (PMID: 10.1038/nbt.2676239751573819121)
Lei F, Yin Y, Wang Y, Deng B, Yu HD, Li L, Xiang C, Wang S, Zhu B, Wang X (2012) Higher-level production of volatile fatty acids in vitro by chicken gut microbiotas than by human gut microbiotas as determined by functional analyses. Appl Environ Microbiol 78:5763–5772. https://doi.org/10.1128/AEM.00327-12. (PMID: 10.1128/AEM.00327-12226851523406128)
Li J-T, Yang H, Lei M-Z, Zhu W-P, Su Y, Li K-Y, Zhu W-Y, Wang J, Zhang L, Qu J, Lv L, Lu H-J, Chen Z-J, Wang L, Yin M, Lei Q-Y (2022) Dietary folate drives methionine metabolism to promote cancer development by stabilizing MAT IIA. Signal Transduct Target Ther 7:192. https://doi.org/10.1038/s41392-022-01017-8. (PMID: 10.1038/s41392-022-01017-8357291579213445)
Liu G, Chen H, Chen J, Wang X, Gu Q, Yin Y (2019) Effects of Bifidobacteria-produced exopolysaccharides on human gut microbiota in vitro. Appl Microbiol Biotechnol 103:1693–1702. https://doi.org/10.1007/s00253-018-9572-6. (PMID: 10.1007/s00253-018-9572-630569218)
Liu M, Chen Q, Sun Y, Zeng L, Wu H, Gu Q, Li P (2022) Probiotic potential of a folate-producing strain Latilactobacillus sakei LZ217 and its modulation effects on human gut microbiota. Foods 11:234. https://doi.org/10.3390/foods11020234. (PMID: 10.3390/foods11020234350539658774781)
Lopez-Siles M, Duncan SH, Garcia-Gil LJ, Martinez-Medina M (2017) Faecalibacterium prausnitzii: from microbiology to diagnostics and prognostics. ISME J 11:841–852. https://doi.org/10.1038/ismej.2016.176. (PMID: 10.1038/ismej.2016.176280454595364359)
Louis P, Flint HJ (2017) Formation of propionate and butyrate by the human colonic microbiota. Environ Microbiol 19:29–41. https://doi.org/10.1111/1462-2920.13589. (PMID: 10.1111/1462-2920.1358927928878)
Louis P, Hold GL, Flint HJ (2014) The gut microbiota, bacterial metabolites and colorectal cancer. Nat Rev Microbiol 12:661–672. https://doi.org/10.1038/nrmicro3344. (PMID: 10.1038/nrmicro334425198138)
Mager LF, Burkhard R, Pett N, Cooke NCA, Brown K, Ramay H, Paik S, Stagg J, Groves RA, Gallo M, Lewis IA, Geuking MB, McCoy KD (2020) Microbiome-derived inosine modulates response to checkpoint inhibitor immunotherapy. Science 369:1481–1489. https://doi.org/10.1126/science.abc3421. (PMID: 10.1126/science.abc342132792462)
Mardinoglu A, Wu H, Bjornson E, Zhang C, Hakkarainen A, Räsänen SM, Lee S, Mancina RM, Bergentall M, Pietiläinen KH, Söderlund S, Matikainen N, Ståhlman M, Bergh P-O, Adiels M, Piening BD, Granér M, Lundbom N, Williams KJ, Romeo S, Nielsen J, Snyder M, Uhlén M, Bergström G, Perkins R, Marschall H-U, Bäckhed F, Taskinen M-R, Borén J (2018) An integrated understanding of the rapid metabolic benefits of a carbohydrate-restricted diet on hepatic steatosis in humans. Cell Metab 27:559-571.e5. https://doi.org/10.1016/j.cmet.2018.01.005. (PMID: 10.1016/j.cmet.2018.01.005294560736706084)
Masuda T, Kimura M, Okada S, Yasui H (2010) Pediococcus pentosaceus Sn26 inhibits IgE production and the occurrence of ovalbumin-induced allergic diarrhea in mice. Biosci Biotechnol Biochem 74:329–335. https://doi.org/10.1271/bbb.90656. (PMID: 10.1271/bbb.9065620139622)
Mjaaseth UN, Norris JC, Aardema NDJ, Bunnell ML, Ward RE, Hintze KJ, Cho CE (2021) Excess vitamins or imbalance of folic acid and choline in the gestational diet alter the gut microbiota and obesogenic effects in wistar rat offspring. Nutrients 13:4510. https://doi.org/10.3390/nu13124510. (PMID: 10.3390/nu13124510349600628705167)
Morgan XC, Tickle TL, Sokol H, Gevers D, Devaney KL, Ward DV, Reyes JA, Shah SA, LeLeiko N, Snapper SB, Bousvaros A, Korzenik J, Sands BE, Xavier RJ, Huttenhower C (2012) Dysfunction of the intestinal microbiome in inflammatory bowel disease and treatment. Genome Biol 13:R79. https://doi.org/10.1186/gb-2012-13-9-r79. (PMID: 10.1186/gb-2012-13-9-r79230136153506950)
Moro-Cantu-Jungles T, do Nascimento GE, Zhang X, Iacomini M, Cordeiro LMC, Hamaker BR (2019) Soluble xyloglucan generates bigger bacterial community shifts than pectic polymers during in vitro fecal fermentation. Carbohydr Polym 206:389–395. https://doi.org/10.1016/j.carbpol.2018.11.011. (PMID: 10.1016/j.carbpol.2018.11.01130553337)
Mortensen PB, Clausen MR (1996) Short-chain fatty acids in the human colon: relation to gastrointestinal health and disease. Scand J Gastroenterol Suppl 216:132–148. https://doi.org/10.3109/00365529609094568. (PMID: 10.3109/003655296090945688726286)
Pan Y, Liu Y, Guo H, Jabir MS, Liu X, Cui W, Li D (2017) Associations between folate and vitamin B12 levels and inflammatory bowel disease: a meta-analysis. Nutrients 9:E382. https://doi.org/10.3390/nu9040382. (PMID: 10.3390/nu9040382)
Peng X, Li S, Luo J, Wu X, Liu L (2013) Effects of dietary fibers and their mixtures on short chain fatty acids and microbiota in mice guts. Food Funct 4:932–938. https://doi.org/10.1039/c3fo60052a.
Reichardt N, Duncan SH, Young P, Belenguer A, McWilliam Leitch C, Scott KP, Flint HJ, Louis P (2014) Phylogenetic distribution of three pathways for propionate production within the human gut microbiota. ISME J 8:1323–1335. https://doi.org/10.1038/ismej.2014.14. (PMID: 10.1038/ismej.2014.14245534674030238)
Rossi M, Amaretti A, Raimondi S (2011) Folate production by probiotic bacteria. Nutrients 3:118–134. https://doi.org/10.3390/nu3010118. (PMID: 10.3390/nu3010118222540783257725)
Rycroft CE, Jones MR, Gibson GR, Rastall RA (2001) Fermentation properties of gentio-oligosaccharides. Lett Appl Microbiol 32:156–161. https://doi.org/10.1046/j.1472-765x.2001.00875.x. (PMID: 10.1046/j.1472-765x.2001.00875.x11264744)
Scott KP, Martin JC, Campbell G, Mayer C-D, Flint HJ (2006) Whole-genome transcription profiling reveals genes up-regulated by growth on fucose in the human gut bacterium “Roseburia inulinivorans.” J Bacteriol 188:4340–4349. https://doi.org/10.1128/JB.00137-06. (PMID: 10.1128/JB.00137-06167409401482943)
Steinert RE, Lee Y-K, Sybesma W (2020) Vitamins for the gut microbiome. Trends Mol Med 26:137–140. https://doi.org/10.1016/j.molmed.2019.11.005. (PMID: 10.1016/j.molmed.2019.11.00531862244)
Steinway SN, Saleh J, Koo BK, Delacour D, Kim DH (2020) Human microphysiological models of intestinal tissue and gut microbiome. Front Bioeng Biotechnol 8:725. https://doi.org/10.3389/fbioe.2020.00725. (PMID: 10.3389/fbioe.2020.00725328506907411353)
Sun X, Wen J, Guan B, Li J, Luo J, Li J, Wei M, Qiu H (2022) Folic acid and zinc improve hyperuricemia by altering the gut microbiota of rats with high-purine diet-induced hyperuricemia. Front Microbiol 13:907952. https://doi.org/10.3389/fmicb.2022.907952. (PMID: 10.3389/fmicb.2022.907952359666749372534)
Sybesma W, Starrenburg M, Tijsseling L, Hoefnagel MHN, Hugenholtz J (2003) Effects of cultivation conditions on folate production by lactic acid bacteria. Appl Environ Microbiol 69:4542–4548. https://doi.org/10.1128/AEM.69.8.4542-4548.2003. (PMID: 10.1128/AEM.69.8.4542-4548.200312902240169137)
Valdés-Varela L, Hernández-Barranco AM, Ruas-Madiedo P, Gueimonde M (2016) Effect of Bifidobacterium upon Clostridium difficile growth and toxicity when co-cultured in different prebiotic substrates. Front Microbiol 7:738. https://doi.org/10.3389/fmicb.2016.00738. (PMID: 10.3389/fmicb.2016.00738272427534870236)
Wang L, Hu L, Xu Q, Jiang T, Fang S, Wang G, Zhao J, Zhang H, Chen W (2017) Bifidobacteria exert species-specific effects on constipation in BALB/c mice. Food Funct 8:3587–3600. https://doi.org/10.1039/c6fo01641c. (PMID: 10.1039/c6fo01641c28884754)
Wang L, Zou L, Li J, Yang H, Yin Y (2021) Effect of dietary folate level on organ weight, digesta pH, short-chain fatty acid concentration, and intestinal microbiota of weaned piglets. J Anim Sci 99:skab015. https://doi.org/10.1093/jas/skab015. (PMID: 10.1093/jas/skab015334763957851895)
Xu J, Liang R, Zhang W, Tian K, Li J, Chen X, Yu T, Chen Q (2020) Faecalibacterium prausnitzii-derived microbial anti-inflammatory molecule regulates intestinal integrity in diabetes mellitus mice via modulating tight junction protein expression. J Diabetes 12:224–236. https://doi.org/10.1111/1753-0407.12986. (PMID: 10.1111/1753-0407.1298631503404)
Zhang J, Cai D, Yang M, Hao Y, Zhu Y, Chen Z, Aziz T, Sarwar A, Yang Z (2020) Screening of folate-producing lactic acid bacteria and modulatory effects of folate-biofortified yogurt on gut dysbacteriosis of folate-deficient rats. Food Funct 11:6308–6318. https://doi.org/10.1039/d0fo00480d. (PMID: 10.1039/d0fo00480d32602881)
Zhao X, Higashikawa F, Noda M, Kawamura Y, Matoba Y, Kumagai T, Sugiyama M (2012) The obesity and fatty liver are reduced by plant-derived Pediococcus pentosaceus LP28 in high fat diet-induced obese mice. PLoS ONE 7:e30696. https://doi.org/10.1371/journal.pone.0030696. (PMID: 10.1371/journal.pone.0030696223634723281851)
Zhou W, Yan Y, Mi J, Zhang H, Lu L, Luo Q, Li X, Zeng X, Cao Y (2018) Simulated digestion and fermentation in vitro by human gut microbiota of polysaccharides from bee collected pollen of chinese wolfberry. J Agric Food Chem 66:898–907. https://doi.org/10.1021/acs.jafc.7b05546. (PMID: 10.1021/acs.jafc.7b0554629313353)
Zhou Q, Gu R, Xue B, Li P, Gu Q (2021) Phenyl lactic acid alleviates Salmonella Typhimurium-induced colitis via regulating microbiota composition, SCFA production and inflammatory responses. Food Funct 12:5591–5606. https://doi.org/10.1039/d1fo00166c. (PMID: 10.1039/d1fo00166c34017972)
Zittoun J (1993) Pharmacokinetics and in vitro studies of L-leucovorin. Comparison with the d and d, l-leucovorin. Ann Oncol 4:S1–S5. https://doi.org/10.1093/annonc/4.suppl_2.S1. (PMID: 10.1093/annonc/4.suppl_2.S1) - Grant Information: 31972974 National Natural Science Foundation of China
- Contributed Indexing: Keywords: 5-Methyltetrahydrofolate; Folic acid deficiency; In vitro fecal slurry culture model; Microbial community; Non-reduced folic acid; SCFAs
- Accession Number: 935E97BOY8 (Folic Acid)
0 (RNA, Ribosomal, 16S)
0 (Fatty Acids, Volatile) - Publication Date: Date Created: 20240104 Date Completed: 20240105 Latest Revision: 20240117
- Publication Date: 20240117
- Accession Number: 10.1007/s00253-023-12825-5
- Accession Number: 38175236
- Source:
Contact CCPL
Copyright 2022 Charleston County Public Library Powered By EBSCO Stacks 3.3.0 [350.3] | Staff Login
No Comments.