CO 2 -based production of phytase from highly stable expression plasmids in Cupriavidus necator H16.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: BioMed Central Country of Publication: England NLM ID: 101139812 Publication Model: Electronic Cited Medium: Internet ISSN: 1475-2859 (Electronic) Linking ISSN: 14752859 NLM ISO Abbreviation: Microb Cell Fact Subsets: MEDLINE
    • Publication Information:
      Original Publication: London : BioMed Central, [2002-
    • Subject Terms:
    • Abstract:
      Background: Existing plasmid systems offer a fundamental foundation for gene expression in Cupriavidus necator; however, their applicability is constrained by the limitations of conjugation. Low segregational stabilities and plasmid copy numbers, particularly in the absence of selection pressure, pose challenges. Phytases, recognized for their widespread application as supplements in animal feed to enhance phosphate availability, present an intriguing prospect for heterologous production in C. necator. The establishment of stable, high-copy number plasmid that can be electroporated would support the utilization of C. necator for the production of single-cell protein from CO 2 .
      Results: In this study, we introduce a novel class of expression plasmids specifically designed for electroporation. These plasmids contain partitioning systems to boost segregation stability, eliminating the need for selection pressure. As a proof of concept, we successfully produced Escherichia coli derived AppA phytase in C. necator H16 PHB - 4 using these improved plasmids. Expression was directed by seven distinct promoters, encompassing the constitutive j5 promoter, hydrogenase promoters, and those governing the Calvin-Benson-Bassham cycle. The phytase activities observed in recombinant C. necator H16 strains ranged from 2 to 50 U/mg of total protein, contingent upon the choice of promoter and the mode of cell cultivation - heterotrophic or autotrophic. Further, an upscaling experiment conducted in a 1 l fed-batch gas fermentation system resulted in the attainment of the theoretical biomass. Phytase activity reached levels of up to 22 U/ml.
      Conclusion: The new expression system presented in this study offers a highly efficient platform for protein production and a wide array of synthetic biology applications. It incorporates robust promoters that exhibit either constitutive activity or can be selectively activated when cells transition from heterotrophic to autotrophic growth. This versatility makes it a powerful tool for tailored gene expression. Moreover, the potential to generate active phytases within C. necator H16 holds promising implications for the valorization of CO 2 in the feed industry.
      (© 2023. The Author(s).)
    • References:
      J Mol Microbiol Biotechnol. 2002 May;4(3):255-62. (PMID: 11931556)
      Biotechnol J. 2017 Nov;12(11):. (PMID: 28755502)
      J Bacteriol. 1995 Nov;177(22):6568-74. (PMID: 7592435)
      Appl Environ Microbiol. 2011 Jun;77(11):3582-90. (PMID: 21478317)
      Metab Eng. 2016 Sep;37:92-101. (PMID: 27212691)
      Appl Microbiol Biotechnol. 2002 Sep;59(6):685-94. (PMID: 12226725)
      Microb Biotechnol. 2010 Nov;3(6):634-57. (PMID: 21255361)
      ACS Synth Biol. 2018 Aug 17;7(8):1918-1928. (PMID: 29949349)
      Crit Rev Biotechnol. 2018 Jun;38(4):494-510. (PMID: 29233025)
      Arch Microbiol. 1978 May 30;117(2):123-9. (PMID: 678018)
      Biotechnol Adv. 2023 Dec;69:108264. (PMID: 37775073)
      Nat Methods. 2009 May;6(5):343-5. (PMID: 19363495)
      Biotechnol Biofuels. 2021 Nov 04;14(1):212. (PMID: 34736496)
      N Biotechnol. 2021 Nov 25;65:20-30. (PMID: 34333160)
      J Bacteriol. 1996 Sep;178(18):5447-51. (PMID: 8808934)
      J Biotechnol. 2017 Sep 10;257:78-86. (PMID: 28687513)
      J Bacteriol. 2003 Jun;185(11):3379-83. (PMID: 12754236)
      PeerJ. 2016 Jul 26;4:e2269. (PMID: 27547572)
      J Appl Toxicol. 2023 Jun;43(6):887-912. (PMID: 36598355)
      Animals (Basel). 2019 May 25;9(5):. (PMID: 31130648)
      Microb Cell Fact. 2020 Dec 11;19(1):228. (PMID: 33308236)
      Arch Microbiol. 2002 Aug;178(2):85-93. (PMID: 12115053)
      Biotechnol Bioeng. 2003 Oct 5;84(1):114-20. (PMID: 12910550)
      ACS Synth Biol. 2023 Jul 21;12(7):2061-2072. (PMID: 37294017)
      Appl Environ Microbiol. 2018 Sep 17;84(19):. (PMID: 30030234)
      Biotechnol Bioeng. 1997 Jul 5;55(1):28-32. (PMID: 18636441)
      Mol Microbiol. 2000 Oct;38(2):359-67. (PMID: 11069661)
      Appl Microbiol Biotechnol. 2018 Mar;102(6):2607-2620. (PMID: 29417200)
      Microb Cell Fact. 2021 Apr 26;20(1):89. (PMID: 33902586)
      Angew Chem Int Ed Engl. 2018 Feb 12;57(7):1879-1882. (PMID: 29232490)
      Sci Rep. 2016 Jun 20;6:27961. (PMID: 27322870)
      Comput Chem. 2001 Dec;26(1):51-6. (PMID: 11765852)
      Bioengineering (Basel). 2022 May 10;9(5):. (PMID: 35621482)
      Biotechnol Biofuels. 2018 Jun 20;11:172. (PMID: 29951116)
      J Microbiol Methods. 2021 Oct;189:106323. (PMID: 34506812)
      Pediatr Nephrol. 2012 Nov;27(11):2039-2048. (PMID: 22552885)
      Probiotics Antimicrob Proteins. 2019 Jun;11(2):580-587. (PMID: 29680882)
      Life (Basel). 2019 May 22;9(2):. (PMID: 31121973)
      Bioresour Technol. 2021 Nov;340:125693. (PMID: 34365298)
      Anal Biochem. 1985 Aug 1;148(2):277-81. (PMID: 4061809)
      Biotechnol Biofuels. 2021 Mar 31;14(1):80. (PMID: 33789740)
      J Biotechnol. 2014 Sep 30;186:74-82. (PMID: 24998763)
      AMB Express. 2021 Nov 16;11(1):151. (PMID: 34783891)
      Appl Environ Microbiol. 2012 Nov;78(22):7884-90. (PMID: 22941075)
      J Biotechnol. 2023 Mar 20;366:25-34. (PMID: 36870479)
      Proc Natl Acad Sci U S A. 1998 Oct 13;95(21):12474-9. (PMID: 9770510)
      Trends Biotechnol. 2021 Apr;39(4):412-424. (PMID: 33518389)
      Protein Expr Purif. 2004 Dec;38(2):264-71. (PMID: 15555942)
      J Bacteriol. 1998 Jun;180(12):3197-204. (PMID: 9620971)
      Appl Environ Microbiol. 1994 Oct;60(10):3585-91. (PMID: 7986037)
    • Contributed Indexing:
      Keywords: Cupriavidus necator; Electroporation; Gas fermentation; Phytase; Promoters; Segregational stability
    • Accession Number:
      EC 3.1.3.26 (6-Phytase)
      142M471B3J (Carbon Dioxide)
    • Publication Date:
      Date Created: 20240103 Date Completed: 20240105 Latest Revision: 20240106
    • Publication Date:
      20240106
    • Accession Number:
      PMC10763379
    • Accession Number:
      10.1186/s12934-023-02280-2
    • Accession Number:
      38172920