Metabolic equilibrium and reproductive resilience: Freshwater gastropods under nanoplastics exposure.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Author(s): Wang T;Wang T; Liu W; Liu W
  • Source:
    Chemosphere [Chemosphere] 2024 Feb; Vol. 350, pp. 141017. Date of Electronic Publication: 2023 Dec 28.
  • Publication Type:
    Journal Article
  • Language:
    English
  • Additional Information
    • Source:
      Publisher: Elsevier Science Ltd Country of Publication: England NLM ID: 0320657 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1879-1298 (Electronic) Linking ISSN: 00456535 NLM ISO Abbreviation: Chemosphere Subsets: MEDLINE
    • Publication Information:
      Publication: Oxford : Elsevier Science Ltd
      Original Publication: Oxford, New York, : Pergamon Press.
    • Subject Terms:
    • Abstract:
      Nanoplastics (NPs) have gained increasing attention due to their widespread presence in aquatic environments and potential adverse effects on organisms. The interaction between NPs and freshwater gastropods can lead to a range of physiological and reproductive disturbances. In this study, we investigated the adverse effects of NPs (two size: 20 nm and 100 nm; three concentrations: 0.5, 50 and 100 ppm) on energy metabolism and reproductive fitness in freshwater gastropods Lymnean stagnalis after 21 days exposure. Briefly, the condition index negatively correlated with increasing NPs concentrations for both sizes. Bioaccumulation revealed a concentration-dependent trend in the 100 nm group, and the highest accumulation appeared in the 100 ppm group, compared to all the rest groups. This phenomenon could be attributed to the larger surface area which facilitates stronger attachment to tissues, while smaller particles could be cleared more readily from body. Carbohydrate and protein reserves remained largely unaffected at all concentrations. However, 100 nm NPs triggered stress responses, increasing lipid production, and 20 nm NPs potentially interfered with mitochondrial function, affecting electron transport system activity. Despite the variations observed in lipid levels and energy cost, the ratio of available energy to energy cost remained stable across for both NPs sizes, and this resilience suggests that cellular energy allocation endured undisturbed, hinting at mechanisms that enable gastropods to maintain their metabolic equilibrium. Reproductively, NPL-exposed groups had fewer clutches, with clutches per collection time decreasing over time for both sizes. In terms of egg development, shell growth and hatching rates remained unaffected, suggesting resilience in aquatic ecosystems.In conclusion, this study underscores the substantial impact of NPs on freshwater gastropods, raising ecological and reproductive concerns. The intricate interplay between nanoparticle size, concentration, and physiological responses highlights the complexity of NPs interactions in aquatic ecosystems, necessitating further research and regulatory measures.
      Competing Interests: Declaration of competing interest The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.
      (Copyright © 2024 The Authors. Published by Elsevier Ltd.. All rights reserved.)
    • Contributed Indexing:
      Keywords: Adverse effects; Energy metabolism; Invertebrates; Nanoparticle; Reproduction
    • Accession Number:
      0 (Microplastics)
      0 (Water Pollutants, Chemical)
      0 (Lipids)
      0 (Polystyrenes)
    • Publication Date:
      Date Created: 20231230 Date Completed: 20240129 Latest Revision: 20240129
    • Publication Date:
      20240129
    • Accession Number:
      10.1016/j.chemosphere.2023.141017
    • Accession Number:
      38159739