RNF187 governs the maintenance of mouse GC-2 cell development by facilitating histone H3 ubiquitination at K57/80.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Shanghai Materia Medica Country of Publication: China NLM ID: 100942132 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1745-7262 (Electronic) Linking ISSN: 1008682X NLM ISO Abbreviation: Asian J Androl Subsets: MEDLINE
    • Publication Information:
      Publication: Shanghai : Shanghai Materia Medica
      Original Publication: Beijing : Science Press,
    • Subject Terms:
    • Abstract:
      RING finger 187 (RNF187), a ubiquitin-ligating (E3) enzyme, plays a crucial role in the proliferation of cancer cells. However, it remains unclear whether RNF187 exhibits comparable functionality in the development of germline cells. To investigate the potential involvement of RNF187 in germ cell development, we conducted interference and overexpression assays using GC-2 cells, a mouse spermatocyte-derived cell line. Our findings reveal that the interaction between RNF187 and histone H3 increases the viability, proliferation, and migratory capacity of GC-2 cells. Moreover, we provide evidence demonstrating that RNF187 interacts with H3 and mediates the ubiquitination of H3 at lysine 57 (K57) or lysine 80 (K80), directly or indirectly resulting in increased cellular transcription. This is a study to report the role of RNF187 in maintaining the development of GC-2 cells by mediating histone H3 ubiquitination, thus highlighting the involvement of the K57 and K80 residues of H3 in the epistatic regulation of gene transcription. These discoveries provide a new theoretical foundation for further comprehensive investigations into the function of RNF187 in the reproductive system.
      (Copyright © 2023 Copyright: © The Author(s)(2023).)
    • References:
      Lipkowitz S, Weissman AM. RINGs of good and evil: RING finger ubiquitin ligases at the crossroads of tumour suppression and oncogenesis. Nat Rev Cancer 2011;11:629–43.
      Iconomou M, Saunders DN. Systematic approaches to identify E3 ligase substrates. Biochem J 2016;473:4083–101.
      Fang S, Weissman AM. A field guide to ubiquitylation. Cell Mol Life Sci 2004;61:1546–61.
      Mansour MA. Ubiquitination: friend and foe in cancer. Int J Biochem Cell Biol 2018;101:80–93.
      Rape M. Ubiquitylation at the crossroads of development and disease. Nat Rev Mol Cell Biol 2018;19:59–70.
      Buetow L, Huang DT. Structural insights into the catalysis and regulation of E3 ubiquitin ligases. Nat Rev Mol Cell Biol 2016;17:626–42.
      Budhidarmo R, Nakatani Y, Day CL. RINGs hold the key to ubiquitin transfer. Trends Biochem Sci 2012;37:58–65.
      Deshaies RJ, Joazeiro CA. RING domain E3 ubiquitin ligases. Annu Rev Biochem 2009;78:399–434.
      Zhang L, Chen J, Yong J, Qiao L, Xu L, et al. An essential role of RNF187 in Notch1 mediated metastasis of hepatocellular carcinoma. J Exp Clin Cancer Res 2019;38:384.
      Fu Z, Yu W, Wang H, Chen X. Overexpression of RNF187 induces cell EMT and apoptosis resistance in NSCLC. J Cell Physiol 2019;234:14161–9.
      Luger K, Mäder AW, Richmond RK, Sargent DF, Richmond TJ. Crystal structure of the nucleosome core particle at 2.8 A resolution. Nature 1997;389:251–60.
      Strahl BD, Allis CD. The language of covalent histone modifications. Nature 2000;403:41–5.
      Kouzarides T. Chromatin modifications and their function. Cell 2007;128:693–705.
      Marsh DJ, Dickson KA. Writing histone monoubiquitination in human malignancy-the role of RING finger E3 ubiquitin ligases. Genes (Basel) 2019;10:67.
      Yang WL, Zhang X, Lin HK. Emerging role of Lys-63 ubiquitination in protein kinase and phosphatase activation and cancer development. Oncogene 2010;29:4493–503.
      Wang H, Wang L, Erdjument-Bromage H, Vidal M, Tempst P, et al. Role of histone H2A ubiquitination in Polycomb silencing. Nature 2004;431:873–8.
      Zhou W, Zhu P, Wang J, Pascual G, Ohgi KA, et al. Histone H2A monoubiquitination represses transcription by inhibiting RNA polymerase II transcriptional elongation. Mol Cell 2008;29:69–80.
      Xia Y, Yang W, Fa M, Li X, Wang Y, et al. RNF8 mediates histone H3 ubiquitylation and promotes glycolysis and tumorigenesis. J Exp Med 2017;214:1843–55.
      Shao B, Guo Y, Wang L, Zhou Q, Gao T, et al. Unraveling the proteomic profile of mice testis during the initiation of meiosis. J Proteomics 2015;120:35–43.
      Qi Y, Jiang M, Yuan Y, Bi Y, Zheng B, et al. ADP-ribosylation factor-like 3, a manchette-associated protein, is essential for mouse spermiogenesis. Mol Hum Reprod 2013;19:327–35.
      Shen C, Yu J, Zhang X, Liu CC, Guo YS, et al. Strawberry Notch 1 (SBNO1) promotes proliferation of spermatogonial stem cells via the noncanonical Wnt pathway in mice. Asian J Androl 2019;21:345–50.
      Qian X, Wang L, Zheng B, Shi ZM, Ge X, et al. Deficiency of Mkrn2 causes abnormal spermiogenesis and spermiation, and impairs male fertility. Sci Rep 2016;6:39318.
      Zhang K, Xu J, Ding Y, Shen C, Lin M, et al. BMI1 promotes spermatogonia proliferation through epigenetic repression of Ptprm . Biochem Biophys Res Commun 2021;583:169–77.
      Wang Q, Wu Y, Lin M, Wang G, Liu J, et al. BMI1 promotes osteosarcoma proliferation and metastasis by repressing the transcription of SIK1. Cancer Cell Int 2022;22:136.
      Yu J, Shen C, Lin M, Chen X, Dai X, et al. BMI1 promotes spermatogonial stem cell maintenance by epigenetically repressing Wnt10b/β-catenin signaling. Int J Biol Sci 2022;18:2807–20.
      Zhou J, Li J, Qian C, Qiu F, Shen Q, et al. LINC00624/TEX10/NF-κB axis promotes proliferation and migration of human prostate cancer cells. Biochem Biophys Res Commun 2022;601:1–8.
      Liu Y, Yu X, Huang A, Zhang X, Wang Y, et al. INTS7-ABCD3 interaction stimulates the proliferation and osteoblastic differentiation of mouse bone marrow mesenchymal stem cells by suppressing oxidative stress. Front Physiol 2021;12:758607.
      Yu J, Chen B, Zheng B, Qiao C, Chen X, et al. ATP synthase is required for male fertility and germ cell maturation in Drosophila testes. Mol Med Rep 2019;19:1561–70.
      Yu J, Luan X, Yan Y, Qiao C, Liu Y, et al. Small ribonucleoprotein particle protein SmD3 governs the homeostasis of germline stem cells and the crosstalk between the spliceosome and ribosome signals in Drosophila . FASEB J 2019;33:8125–37.
      Yu J, Yan Y, Luan X, Qiao C, Liu Y, et al. Srlp is crucial for the self-renewal and differentiation of germline stem cells via RpL6 signals in Drosophila testes. Cell Death Dis 2019;10:294.
      Yan Y, Tao H, He J, Huang SY. The HDOCK server for integrated protein-protein docking. Nat Protoc 2020;15:1829–52.
      Senior AW, Evans R, Jumper J, Kirkpatrick J, Sifre L, et al. Improved protein structure prediction using potentials from deep learning. Nature 2020;577:706–10.
      Guo Y, Zhang H, Yao L, Li Y, Situ C, et al. Systematic analysis of the ubiquitome in mouse testis. Proteomics 2021;21:e2100025.
      Zhang X, Li B, Rezaeian AH, Xu X, Chou PC, et al. H3 ubiquitination by NEDD4 regulates H3 acetylation and tumorigenesis. Nat Commun 2017;8:14799.
      Martin C, Zhang Y. The diverse functions of histone lysine methylation. Nat Rev Mol Cell Biol 2005;6:838–49.
      Peterson CL, Laniel MA. Histones and histone modifications. Curr Biol 2004;14:R546–51.
      de Napoles M, Mermoud JE, Wakao R, Tang YA, Endoh M, et al. Polycomb group proteins Ring1A/B link ubiquitylation of histone H2A to heritable gene silencing and X inactivation. Dev Cell 2004;7:663–76.
      Buchwald G, van der Stoop P, Weichenrieder O, Perrakis A, van Lohuizen M, et al. Structure and E3-ligase activity of the Ring-Ring complex of polycomb proteins Bmi1 and Ring1b. EMBO J 2006;25:2465–74.
      Chen A, Kleiman FE, Manley JL, Ouchi T, Pan ZQ. Autoubiquitination of the BRCA1*BARD1 RING ubiquitin ligase. J Biol Chem 2002;277:22085–92.
      Barbour H, Daou S, Hendzel M, Affar EB. Polycomb group-mediated histone H2A monoubiquitination in epigenome regulation and nuclear processes. Nat Commun 2020;11:5947.
      Tarcic O, Pateras IS, Cooks T, Shema E, Kanterman J, et al. RNF20 links histone H2B ubiquitylation with inflammation and inflammation-associated cancer. Cell Rep 2016;14:1462–76.
      Carter RJ, Nickson CM, Thompson JM, Kacperek A, Hill MA, et al. Complex DNA damage induced by high linear energy transfer alpha-particles and protons triggers a specific cellular DNA damage response. Int J Radiat Oncol Biol Phys 2018;100:776–84.
      Chernikova SB, Razorenova OV, Higgins JP, Sishc BJ, Nicolau M, et al. Deficiency in mammalian histone H2B ubiquitin ligase Bre1 (Rnf20/Rnf40) leads to replication stress and chromosomal instability. Cancer Res 2012;72:2111–9.
      Minsky N, Oren M. The RING domain of Mdm2 mediates histone ubiquitylation and transcriptional repression. Mol Cell 2004;16:631–9.
      Li XS, Trojer P, Matsumura T, Treisman JE, Tanese N. Mammalian SWI/SNF –a subunit BAF250/ARID1 is an E3 ubiquitin ligase that targets histone H2B. Mol Cell Biol 2010;30:1673–88.
      Zhang Y. Transcriptional regulation by histone ubiquitination and deubiquitination. Genes Dev 2003;17:2733–40.
      Wang Z, Kong Q, Su P, Duan M, Xue M, et al. Regulation of Hippo signaling and triple negative breast cancer progression by an ubiquitin ligase RNF187. Oncogenesis 2020;9:36.
    • Accession Number:
      0 (Histones)
      EC 2.3.2.27 (Ubiquitin-Protein Ligases)
      K3Z4F929H6 (Lysine)
    • Publication Date:
      Date Created: 20231229 Date Completed: 20240729 Latest Revision: 20240729
    • Publication Date:
      20240730
    • Accession Number:
      PMC11156453
    • Accession Number:
      10.4103/aja202368
    • Accession Number:
      38156805