Downregulation of Sirt3 contributes to β-cell dedifferentiation via FoxO1 in type 2 diabetic mellitus.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Springer Verlag Country of Publication: Germany NLM ID: 9200299 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 1432-5233 (Electronic) Linking ISSN: 09405429 NLM ISO Abbreviation: Acta Diabetol Subsets: MEDLINE
    • Publication Information:
      Publication: Berlin : Springer Verlag
      Original Publication: Berlin : Springer International, c1991-
    • Subject Terms:
    • Abstract:
      Aims: FoxO1 is an important factor in the β-cell differentiation in type 2 diabetes mellitus (T2DM). Sirt3 is found to be involved in FoxO1 function. This study investigated the role of Sirt3 in the β-cell dedifferentiation and its mechanism.
      Methods: Twelve-week-old db/db mice and INS1 cells transfected with Sirt3-specific short hairpin RNA (shSirt3) were used to evaluate the dedifferentiation of β-cell. Insulin levels were measured by enzyme linked immunosorbent assay. The proteins of Sirt3, T-FoxO1, Ac-FoxO1 and differentiation indexes such as NGN3, OCT4, MAFA were determined by western blot or immunofluorescence staining. The combination of Sirt3 and FoxO1 was determined by the co-immunoprecipitation assay. The transcriptional activity of FoxO1 was detected by dual luciferase reporter assay.
      Results: Both the in vivo and in vitro results showed that Sirt3 was decreased along with β-cell dedifferentiation and decreased function of insulin secretion under high glucose conditions. When Sirt3 was knocked down in INS1 cells, increased β-cell dedifferentiation and lowered insulin secretion were observed. This effect was closely related to the amount loss and the decreased deacetylation of FoxO1, which resulted in a reduction in transcriptional activity.
      Conclusion: Downregulation of Sirt3 contributes to β-cell dedifferentiation in high glucose via FoxO1. Intervention of Sirt3 may be an effective approach to prevent β-cell failure in T2DM.
      (© 2023. Springer-Verlag Italia S.r.l., part of Springer Nature.)
    • References:
      Baeza J, Smallegan MJ, Denu JM (2016) Mechanisms and dynamics of protein acetylation in mitochondria. Trends Biochem Sci 413:231–244. https://doi.org/10.1016/j.tibs.2015.12.006. (PMID: 10.1016/j.tibs.2015.12.006)
      Benchoula K, Arya A, Parhar IS, Hwa WE (2021) FoxO1 signaling as a therapeutic target for type 2 diabetes and obesity. Eur J Pharmacol 891:173758. https://doi.org/10.1016/j.ejphar.2020.173758. (PMID: 10.1016/j.ejphar.2020.17375833249079)
      Bensellam M, Jonas JC, Laybutt DR (2018) Mechanisms of beta-cell dedifferentiation in diabetes: recent findings and future research directions. J Endocrinol 2362:R109–R143. https://doi.org/10.1530/JOE-17-0516. (PMID: 10.1530/JOE-17-0516)
      Bindu S, Pillai VB, Kanwal A et al (2017) SIRT3 blocks myofibroblast differentiation and pulmonary fibrosis by preventing mitochondrial DNA damage. Am J Physiol Lung Cell Mol Physiol 3121:L68–L78. https://doi.org/10.1152/ajplung.00188.2016. (PMID: 10.1152/ajplung.00188.2016)
      Cai Z, Liu S, Nie Y et al (2022) Decreased Sirt3 contributes to cyclic production of reactive oxygen species and islet β-cell apoptosis in high glucose conditions. Mol biol rep 4911:10479–10488. (PMID: 10.1007/s11033-022-07916-x)
      Cao H, Chung ACK, Ming X et al (2022) Autotaxin signaling facilitates β cell dedifferentiation and dysfunction induced by Sirtuin 3 deficiency. Mol Metab 60:101493. (PMID: 10.1016/j.molmet.2022.101493353982779048116)
      Carpino G, Renzi A, Cardinale V et al (2016) Progenitor cell niches in the human pancreatic duct system and associated pancreatic duct glands: an anatomical and immunophenotyping study. J Anat 2283:474–486. https://doi.org/10.1111/joa.12418. (PMID: 10.1111/joa.12418)
      Casteels T, Zhang Y, Frogne T et al (2021) An inhibitor-mediated beta-cell dedifferentiation model reveals distinct roles for FoxO1 in glucagon repression and insulin maturation. Mol Metab 54:101 329. (PMID: 10.1016/j.molmet.2021.101329)
      Caton PW, Richardson SJ, Kieswich J et al (2013) Sirtuin 3 regulates mouse pancreatic beta cell function and is suppressed in pancreatic islets isolated from human type 2 diabetic patients. Diabetologia 565:1068–1077. (PMID: 10.1007/s00125-013-2851-y)
      Chen XY, Shi YX, Huang YP et al (2022) SDF-1 inhibits the dedifferentiation of islet β cells in hyperglycaemia by up-regulating FoxO1 via binding to CXCR4. J Cell Mol Med 263:750–763. (PMID: 10.1111/jcmm.17110)
      Cinti F, Bouchi R, Kim-Muller JY et al (2016) Evidence of β-Cell dedifferentiation in human type 2 diabetes. J Clin Endocr Metab 1013:1044–1054. (PMID: 10.1210/jc.2015-2860)
      Cui C, Li T, Xie Y et al (2021) Enhancing Acsl4 in absence of mTORC2/Rictor drove beta-cell dedifferentiation via inhibiting FoxO1 and promoting ROS production. Biochim Biophys Acta Mol Basis Dis 186712:166261. https://doi.org/10.1016/j.bbadis.2021.166261. (PMID: 10.1016/j.bbadis.2021.166261)
      Denu RA (2017) SIRT3 enhances mesenchymal stem cell longevity and differentiation. Oxid Med Cell Longev 2017:5841716. https://doi.org/10.1155/2017/5841716. (PMID: 10.1155/2017/5841716287174085499245)
      Diedisheim M, Oshima M, Albagli O et al (2018) Modeling human pancreatic beta cell dedifferentiation. Mol Metab 10:74–86. https://doi.org/10.1016/j.molmet.2018.02.002. (PMID: 10.1016/j.molmet.2018.02.002294721025985229)
      Dor Y, Glaser B (2013) beta-cell dedifferentiation and type 2 diabetes. N Engl J Med 3686:572–573. https://doi.org/10.1056/NEJMcibr1214034. (PMID: 10.1056/NEJMcibr1214034)
      Hwang YJ, Sung GJ, Marquardt R et al (2022) SIRT1 plays an important role in implantation and decidualization during mouse early pregnancy. Biol Reprod 1066:1072–1082. https://doi.org/10.1093/biolre/ioac026. (PMID: 10.1093/biolre/ioac026)
      Ishikawa K, Tsunekawa S, Ikeniwa M et al (2015) Long-term pancreatic beta cell exposure to high levels of glucose but not palmitate induces DNA methylation within the insulin gene promoter and represses transcriptional activity. PLoS ONE 102:e0115350. https://doi.org/10.1371/journal.pone.0115350. (PMID: 10.1371/journal.pone.0115350)
      Jonas JC, Laybutt DR, Steil GM et al (2001) High glucose stimulates early response gene c-Myc expression in rat pancreatic beta cells. J Biol Chem 27638:35375–35381. https://doi.org/10.1074/jbc.M105020200. (PMID: 10.1074/jbc.M105020200)
      Kim-Muller JY, Kim YJ, Fan J et al (2016) FoxO1 deacetylation decreases fatty acid oxidation in beta-cells and sustains insulin secretion in diabetes. J Biol Chem 29119:10162–10172. https://doi.org/10.1074/jbc.M115.705608. (PMID: 10.1074/jbc.M115.705608)
      Kitamura T (2013) The role of FOXO1 in beta-cell failure and type 2 diabetes mellitus. Nat Rev Endocrinol 910:615–623. https://doi.org/10.1038/nrendo.2013.157. (PMID: 10.1038/nrendo.2013.157)
      Kitamura YI, Kitamura T, Kruse JP et al (2005) FoxO1 protects against pancreatic beta cell failure through NeuroD and MafA induction. Cell Metab 23:153–163. https://doi.org/10.1016/j.cmet.2005.08.004. (PMID: 10.1016/j.cmet.2005.08.004)
      Li J, Chen T, Xiao M et al (2016) Mouse Sirt3 promotes autophagy in AngII-induced myocardial hypertrophy through the deacetylation of FoxO1. Oncotarget 752:86648–86659. https://doi.org/10.18632/oncotarget.13429. (PMID: 10.18632/oncotarget.13429)
      Lim S, Rashid MA, Jang M et al (2011) Mitochondria-targeted antioxidants protect pancreatic beta-cells against oxidative stress and improve insulin secretion in glucotoxicity and glucolipotoxicity. Cell Physiol Biochem 285:873–886. https://doi.org/10.1159/000335802. (PMID: 10.1159/000335802)
      Moin ASM, Butler AE (2019) Alterations in beta cell identity in type 1 and type 2 diabetes. Curr Diab Rep 199:83. https://doi.org/10.1007/s11892-019-1194-6. (PMID: 10.1007/s11892-019-1194-6)
      Nishimura W, Takahashi S, Yasuda K (2015) MafA is critical for maintenance of the mature beta cell phenotype in mice. Diabetologia 583:566–574. https://doi.org/10.1007/s00125-014-3464-9. (PMID: 10.1007/s00125-014-3464-9)
      Pang X, Cheng J, Wu T, Sun L (2023) SIRT3 ameliorates polycystic ovary syndrome through FOXO1/PGC-1alpha signaling pathway. Endocrine 801:201–211. https://doi.org/10.1007/s12020-022-03262-x. (PMID: 10.1007/s12020-022-03262-x)
      Prentki M, Peyot ML, Masiello P, Madiraju SRM (2020) Nutrient-induced metabolic stress, adaptation, detoxification, and toxicity in the pancreatic beta-cell. Diabetes 693:279–290. https://doi.org/10.2337/dbi19-0014. (PMID: 10.2337/dbi19-0014)
      Qin W, Kang M, Li C, Zheng W, Guo Q (2023) VNN1 overexpression in pancreatic cancer cells inhibits paraneoplastic islet function by increasing oxidative stress and inducing beta-cell dedifferentiation. Oncol Rep 49:1–13. (PMID: 10.3892/or.2023.8557)
      Rattanaamnuaychai P, Roshorm YM, Wilasrusmee C, Proprom N, Ongphiphadhanakul B, Talchai SC (2020) Direct suppression of human islet dedifferentiation progenitor genes, but not epithelial to mesenchymal transition by liraglutide. Heliyon 69:e04951. https://doi.org/10.1016/j.heliyon.2020.e04951. (PMID: 10.1016/j.heliyon.2020.e04951)
      Song MY, Wang J, Ka SO, Bae EJ, Park BH (2016) Insulin secretion impairment in Sirt6 knockout pancreatic β cells is mediated by suppression of the FoxO1-Pdx1-Glut2 pathway. Sci Rep 6:30321. (PMID: 10.1038/srep30321274579714960548)
      Staszkiewicz J, Power RA, Harkins LL et al (2013) Silencing histone deacetylase-specific isoforms enhances expression of pluripotency genes in bovine fibroblasts. Cell Reprogr 15(5):397–404. https://doi.org/10.1089/cell.2013.0026. (PMID: 10.1089/cell.2013.0026)
      Talchai C, Xuan S, Lin HV, Sussel L, Accili D (2012) Pancreatic beta cell dedifferentiation as a mechanism of diabetic beta cell failure. Cell 1506:1223–1234. https://doi.org/10.1016/j.cell.2012.07.029. (PMID: 10.1016/j.cell.2012.07.029)
      Tang C, Han P, Oprescu AI et al (2007) Evidence for a role of superoxide generation in glucose-induced beta-cell dysfunction in vivo. Diabetes 5611:2722–2731. https://doi.org/10.2337/db07-0279. (PMID: 10.2337/db07-0279)
      Tuo Y, Wang DF, Li SB, Chen C (2011) Long-term exposure of INS-1 rat insulinoma cells to linoleic acid and glucose in vitro affects cell viability and function through mitochondrial-mediated pathways. Endocrine 392:128–138. https://doi.org/10.1007/s12020-010-9432-3. (PMID: 10.1007/s12020-010-9432-3)
      Wang JY, Nie YX, Dong BZ et al (2021) Quercetin protects islet beta-cells from oxidation-induced apoptosis via Sirt3 in T2DM. Iran J Basic Med Sci 245:629–635. https://doi.org/10.22038/ijbms.2021.52005.11792. (PMID: 10.22038/ijbms.2021.52005.11792)
      Wang K, Cui X, Li F et al (2023) Glucagon receptor blockage inhibits β-cell dedifferentiation through FoxO1. Am j physiol-endoc m 3241:E97-e113.
      Wang W, Liu C, Jimenez-Gonzalez M, Song WJ, Hussain MA (2017) The undoing and redoing of the diabetic beta-cell. J Diabetes Complic 315:912–917. https://doi.org/10.1016/j.jdiacomp.2017.01.028. (PMID: 10.1016/j.jdiacomp.2017.01.028)
      Weir GC, Aguayo-Mazzucato C, Bonner-Weir S (2013) beta-cell dedifferentiation in diabetes is important but what is it? Islets 55:233–237. https://doi.org/10.4161/isl.27494. (PMID: 10.4161/isl.27494)
      Xing YQ, Li A, Yang Y, Li XX, Zhang LN, Guo HC (2018) The regulation of FOXO1 and its role in disease progression. Life Sci 193:124–131. (PMID: 10.1016/j.lfs.2017.11.03029158051)
      Zang L, Chi J, Bi S, Tao Y, Wang R, Li L (2023) SIRT3 improves alveolar epithelial cell damage caused by bronchopulmonary dysplasia through deacetylation of FOXO1. Allergol Immunopathol (Madr) 512:191–204. https://doi.org/10.15586/aei.v51i2.710. (PMID: 10.15586/aei.v51i2.710)
      Zhang B, Cui S, Bai X et al (2013) SIRT3 overexpression antagonizes high glucose accelerated cellular senescence in human diploid fibroblasts via the SIRT3-FOXO1 signaling pathway. Age (Dordr) 356:2237–2253. https://doi.org/10.1007/s11357-013-9520-4. (PMID: 10.1007/s11357-013-9520-4)
      Zhou Y, Jetton TL, Goshorn S, Lynch CJ, She P (2010) Transamination is required for {alpha}-ketoisocaproate but not leucine to stimulate insulin secretion. J Biol Chem 28544:33718–33726. https://doi.org/10.1074/jbc.M110.136846. (PMID: 10.1074/jbc.M110.136846)
      Zhu YX, Sun Y, Zhou YC et al (2019) MicroRNA-24 promotes pancreatic beta cells toward dedifferentiation to avoid endoplasmic reticulum stress-induced apoptosis. J Mol Cell Biol 119:747–760. https://doi.org/10.1093/jmcb/mjzz004. (PMID: 10.1093/jmcb/mjzz004)
    • Grant Information:
      81903681 National Natural Science Foundation of China; ZR-XY201502 Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy
    • Contributed Indexing:
      Keywords: Dedifferentiation; FoxO1; High glucose; Sirt3; T2DM; β-Cell
    • Accession Number:
      IY9XDZ35W2 (Glucose)
      0 (Insulin)
      0 (Sirt3 protein, mouse)
      EC 3.5.1.- (Sirtuin 3)
      0 (Foxo1 protein, mouse)
    • Publication Date:
      Date Created: 20231227 Date Completed: 20240327 Latest Revision: 20240329
    • Publication Date:
      20240329
    • Accession Number:
      10.1007/s00592-023-02221-w
    • Accession Number:
      38150004