Microfluidics: The future of sperm selection in assisted reproduction.

Item request has been placed! ×
Item request cannot be made. ×
loading   Processing Request
  • Additional Information
    • Source:
      Publisher: Wiley-Blackwell Country of Publication: England NLM ID: 101585129 Publication Model: Print-Electronic Cited Medium: Internet ISSN: 2047-2927 (Electronic) Linking ISSN: 20472919 NLM ISO Abbreviation: Andrology Subsets: MEDLINE
    • Publication Information:
      Original Publication: Oxford : Wiley-Blackwell, 2013-
    • Subject Terms:
    • Abstract:
      Background: Obtaining functional sperm cells is the first step to treat infertility. With the ever-increasing trend in male infertility, clinicians require access to effective solutions that are able to single out the most viable spermatozoa, which would max out the chance for a successful pregnancy. The new generation techniques for sperm selection involve microfluidics, which offers laminar flow and low Reynolds number within the platforms can provide unprecedented opportunities for sperm selection. Previous studies showed that microfluidic platforms can provide a novel approach to this challenge and since then researchers across the globe have attacked this problem from multiple angles.
      Objective: In this review, we seek to provide a much-needed bridge between the technical and medical aspects of microfluidic sperm selection. Here, we provide an up-to-date list on microfluidic sperm selection procedures and its application in assisted reproductive technology laboratories.
      Search Method: A literature search was performed in Web of Science, PubMed, and Scopus to select papers reporting microfluidic sperm selection using the keywords: microfluidic sperm selection, self-motility, non-motile sperm selection, boundary following, rheotaxis, chemotaxis, and thermotaxis. Papers published before March 31, 2023 were selected.
      Outcomes: Our results show that most studies have used motility-based properties for sperm selection. However, microfluidic platforms are ripe for making use of other properties such as chemotaxis and especially rheotaxis. We have identified that low throughput is one of the major hurdles to current microfluidic sperm selection chips, which can be solved via parallelization.
      Conclusion: Future work needs to be performed on numerical simulation of the microfluidics chip prior to fabrication as well as relevant clinical assessment after the selection procedure. This would require a close collaboration and understanding among engineers, biologists, and medical professionals. It is interesting that in spite of two decades of microfluidics sperm selection, numerical simulation and clinical studies are lagging behind. It is expected that microfluidic sperm selection platforms will play a major role in the development of fully integrated start-to-finish assisted reproductive technology systems.
      (© 2023 American Society of Andrology and European Academy of Andrology.)
    • References:
      Rahimizadeh P, Topraggaleh TR, Nasr‐Esfahani MH, et al. The alteration of PLCζ protein expression in unexplained infertile and asthenoteratozoospermic patients: a potential effect on sperm fertilization ability. Mol Reprod Dev. 2020;87(1):115‐123.
      Ziarati N, Tavalaee M, Bahadorani M, Esfahani MHN. Clinical outcomes of magnetic activated sperm sorting in infertile men candidate for ICSI. Hum Fertil. 2019;22(2):118‐125.
      Zahedi A, Tavalaee M, Deemeh M, Azadi L, Fazilati M, Nasr‐Esfahani M. Zeta potential vs apoptotic marker: which is more suitable for ICSI sperm selection? J Assist Reprod Genet. 2013;30:1181‐1186.
      Gosálvez J, Migueles B, López‐Fernández C, Sanchéz‐Martín F, Sáchez‐Martín P. Single sperm selection and DNA fragmentation analysis: the case of MSOME/IMSI. Nat Sci. 2013;5:7‐14.
      Viswambharan N, Murugan M. Effect of wash and swim‐up and density gradient sperm preparation on sperm DNA fragmentation. Mater Today: Proc. 2021;45:2002‐2005.
      Marzano G, Chiriacò MS, Primiceri E, et al. Sperm selection in assisted reproduction: a review of established methods and cutting‐edge possibilities. Biotechnol Adv. 2020;40:107498.
      Quinn MM, Jalalian L, Ribeiro S, et al. Microfluidic sorting selects sperm for clinical use with reduced DNA damage compared to density gradient centrifugation with swim‐up in split semen samples. Hum Reprod. 2018;33(8):1388‐1393.
      Yamanaka M, Tomita K, Hashimoto S, et al. Combination of density gradient centrifugation and swim‐up methods effectively decreases morphologically abnormal sperms. J Reprod Dev. 2016;62(6):599‐606.
      Dai X, Wang Y, Cao F, et al. Sperm enrichment from poor semen samples by double density gradient centrifugation in combination with swim‐up for IVF cycles. Sci Rep. 2020;10(1):2286.
      Younglai E, Holt D, Brown P, Jurisicova A, Casper R. Sperm swim‐up techniques and DNA fragmentation. Hum Reprod. 2001;16(9):1950‐1953.
      Berendsen JTW. Microfluidic Spermatozoa Selection for Clinical Applications. University of Twente; 2019.
      Keihani S, Verrilli LE, Zhang C, et al. Semen parameter thresholds and time‐to‐conception in subfertile couples: how high is high enough? Hum Reprod. 2021;36(8):2121‐2133.
      Phiphattanaphiphop C, Leksakul K, Phatthanakun R, Suthummapiwat A. Real‐time single cell monitoring: measurement and counting of motile sperm using LCR impedance‐integrated microfluidic device. Micromachines. 2019;10(10):647.
      Narayanamurthy V, Jeroish Z, Bhuvaneshwari K, et al. Advances in passively driven microfluidics and lab‐on‐chip devices: a comprehensive literature review and patent analysis. RSC Adv. 2020;10(20):11652‐11680.
      Schuster TG, Cho B, Keller LM, Takayama S, Smith GD. Isolation of motile spermatozoa from semen samples using microfluidics. Reprod Biomed Online. 2003;7(1):75‐81.
      Riordon J, Tarlan F, You JB, et al. Two‐dimensional planar swimming selects for high DNA integrity sperm. Lab Chip. 2019;19(13):2161‐2167.
      Huang H‐Y, Fu H‐T, Tsing H‐Y, Huang H‐J, Li C‐J, Yao D‐J. Motile human sperm sorting by an integrated microfluidic system. J Nanomed Nanotechnol. 2014;5(3):1.
      Yan Y, Liu H, Zhang B, Liu R. A PMMA‐based microfluidic device for human sperm evaluation and screening on swimming capability and swimming persistence. Micromachines. 2020;11(9):793.
      Chinnasamy T, Kingsley JL, Inci F, et al. Guidance and self‐sorting of active swimmers: 3D periodic arrays increase persistence length of human sperm selecting for the fittest. Adv Sci. 2018;5(2):1700531.
      Kim Y, Chun K. Novel sperm sorting microfluidic chip with feedback channel and vertical orientation. 2019 IEEE Sensors. IEEE; 2019:1‐4.
      Sackmann EK, Fulton AL, Beebe DJ. The present and future role of microfluidics in biomedical research. Nature. 2014;507(7491):181‐189.
      Cho BS, Schuster TG, Zhu X, Chang D, Smith GD, Takayama S. Passively driven integrated microfluidic system for separation of motile sperm. Anal Chem. 2003;75(7):1671‐1675.
      Seo D‐B, Agca Y, Feng Z, Critser JK. Development of sorting, aligning, and orienting motile sperm using microfluidic device operated by hydrostatic pressure. Microfluid Nanofluid. 2007;3:561‐570.
      Huang H‐Y, Lu C‐Y, Wang I‐W, Yao D‐J. Motility‐driven sperm‐sorting microfluidic chip with little cell damage for oligozoospermia patients. Sens Mater. 2020;32(8):2585‐2596.
      Xiao S, Riordon J, Simchi M, et al. FertDish: microfluidic sperm selection‐in‐a‐dish for intracytoplasmic sperm injection. Lab Chip. 2021;21(4):775‐783.
      Shirota K, Yotsumoto F, Itoh H, et al. Separation efficiency of a microfluidic sperm sorter to minimize sperm DNA damage. Fertil Steril. 2016;105(2):315‐321.e1.
      Tasoglu S, Safaee H, Zhang X, et al. Exhaustion of racing sperm in nature‐mimicking microfluidic channels during sorting. Small. 2013;9(20):3374‐3384.
      Zaferani M, Palermo GD, Abbaspourrad A. Strictures of a microchannel impose fierce competition to select for highly motile sperm. Sci Adv. 2019;5(2):eaav2111.
      Gadêlha H, Hernández‐Herrera P, Montoya F, Darszon A, Corkidi G. The human sperm beats anisotropically and asymmetrically in 3D. Biorxiv. 2019:795245.
      Saggiorato G, Alvarez L, Jikeli JF, Kaupp UB, Gompper G, Elgeti J. Human sperm steer with second harmonics of the flagellar beat. Nat Commun. 2017;8(1):1415.
      Gong A, Rode S, Kaupp UB, et al. The steering gaits of sperm. Philos Trans R Soc B. 2020;375(1792):20190149.
      Tian F‐B, Wang L. Numerical modeling of sperm swimming. Fluids. 2021;6(2):73.
      Kiani A, Mohammadi Amin M. Numerical analysis of oscillations of flexible strip attached to rigid body in compressible viscous flow via 3D fluid–structure interaction simulation. Mod Mech Eng. 2020;20(1):139‐147.
      Schoeller SF, Keaveny EE. From flagellar undulations to collective motion: predicting the dynamics of sperm suspensions. J R Soc Interface. 2018;15(140):20170834.
      Rufo J, Cai F, Friend J, Wiklund M, Huang TJ. Acoustofluidics for biomedical applications. Nat Rev Methods Primers. 2022;2(1):30.
      Gai J, Dervisevic E, Devendran C, et al. High‐frequency ultrasound boosts bull and human sperm motility. Adv Sci. 2022;9(11):2104362.
      Bayareh M. An updated review on particle separation in passive microfluidic devices. Chem Eng Process: Process Intensif. 2020;153:107984.
      Nowicka‐Bauer K, Nixon B. Molecular changes induced by oxidative stress that impair human sperm motility. Antioxidants. 2020;9(2):134.
      Miki K, Clapham DE. Rheotaxis guides mammalian sperm. Curr Biol. 2013;23(6):443‐452.
      El‐Sherry TM, Elsayed M, Abdelhafez HK, Abdelgawad M. Characterization of rheotaxis of bull sperm using microfluidics. Integr Biol. 2014;6(12):1111‐1121.
      Sharma S, Kabir MA, Asghar W. Selection of healthy sperm based on positive rheotaxis using a microfluidic device. Analyst. 2022;147(8):1589‐1597.
      Zhang Z, Liu J, Meriano J, et al. Human sperm rheotaxis: a passive physical process. Sci Rep. 2016;6(1):23553.
      Gai J, Devendran C, Neild A, Nosrati R. Surface acoustic wave‐driven pumpless flow for sperm rheotaxis analysis. Lab Chip. 2022;22(22):4409‐4417.
      Uspal W, Popescu MN, Dietrich S, Tasinkevych M. Rheotaxis of spherical active particles near a planar wall. Soft Matter. 2015;11(33):6613‐6632.
      Nakane D, Kabata Y, Nishizaka T. Cell shape controls rheotaxis in small parasitic bacteria. PLoS Pathog. 2022;18(7):e1010648.
      Dey R, Buness CM, Hokmabad BV, Jin C, Maass CC. Oscillatory rheotaxis of artificial swimmers in microchannels. Nat Commun. 2022;13(1):2952.
      Ishimoto K, Gaffney EA. Fluid flow and sperm guidance: a simulation study of hydrodynamic sperm rheotaxis. J R Soc Interface. 2015;12(106):20150172.
      Soto‐Heras S, Sakkas D, Miller DJ. Sperm selection by the oviduct: perspectives for male fertility and assisted reproductive technologies. Biol Reprod. 2023;108(4):538‐552.
      El‐Sherry TM, Abdel‐Ghani MA, Abdel Hafez HK, Abdelgawad M. Rheotaxis of sperm in fertile and infertile men. Syst Biol Reprod Med. 2023;69(1):57‐63.
      Rappa K, Samargia J, Sher M, Pino JS, Rodriguez HF, Asghar W. Quantitative analysis of sperm rheotaxis using a microfluidic device. Microfluid Nanofluid. 2018;22(9):100.
      De Martin H, Cocuzza MS, Tiseo BC, et al. Positive rheotaxis extended drop: a one‐step procedure to select and recover sperm with mature chromatin for intracytoplasmic sperm injection. J Assist Reprod Genet. 2017;34:1699‐1708.
      Zaferani M, Cheong SH, Abbaspourrad A. Rheotaxis‐based separation of sperm with progressive motility using a microfluidic corral system. Proc Natl Acad Sci U S A. 2018;115(33):8272‐8277.
      Yaghoobi M, Azizi M, Mokhtare A, Javi F, Abbaspourrad A. Rheotaxis quality index: a new parameter that reveals male mammalian in vivo fertility and low sperm DNA fragmentation. Lab Chip. 2022;22(8):1486‐1497.
      Sarbandi IR, Lesani A, Moghimi Zand M, Nosrati R. Rheotaxis‐based sperm separation using a biomimicry microfluidic device. Sci Rep. 2021;11(1):18327.
      Heydari A, Zabetian Targhi M, Halvaei I, Nosrati R. A novel microfluidic device with parallel channels for sperm separation using spermatozoa intrinsic behaviors. Sci Rep. 2023;13(1):1185.
      Fang Y, Wu R, Lee JM, Chan LHM, Chan KYJ. Microfluidic in‐vitro fertilization technologies: transforming the future of human reproduction. TrAC Trends Anal Chem. 2023;160:116959.
      Nosrati R, Graham PJ, Zhang B, et al. Microfluidics for sperm analysis and selection. Nat Rev Urol. 2017;14(12):707‐730.
      Eisenbach M. Sperm chemotaxis. Rev Reprod. 1999;4(1):56‐66.
      Pérez‐Cerezales S, López‐Cardona A, Gutiérrez‐Adán A. Progesterone effects on mouse sperm kinetics in conditions of viscosity. Reproduction. 2016;151(5):501‐507.
      Armon L, Eisenbach M. Behavioral mechanism during human sperm chemotaxis: involvement of hyperactivation. PLoS One. 2011;6(12):e28359.
      Li J, Lin F. Microfluidic devices for studying chemotaxis and electrotaxis. Trends Cell Biol. 2011;21(8):489‐497.
      Nelson RD, Quie PG, Simmons RL. Chemotaxis under agarose: a new and simple method for measuring chemotaxis and spontaneous migration of human polymorphonuclear leukocytes and monocytes. J Immunol. 1975;115(6):1650‐1656.
      Zicha D, Dunn G, Jones G. Analyzing chemotaxis using the Dunn direct‐viewing chamber. Basic Cell Culture Protocols. 1997:449‐457.
      Xie L, Ma R, Han C, et al. Integration of sperm motility and chemotaxis screening with a microchannel‐based device. Clin Chem. 2010;56(8):1270‐1278.
      Ko Y‐J, Maeng J‐H, Hwang SY, Ahn Y. Design, fabrication, and testing of a microfluidic device for thermotaxis and chemotaxis assays of sperm. SLAS Technol. 2018;23(6):507‐515.
      Doostabadi MR, Mangoli E, Marvast LD, et al. Microfluidic devices employing chemo‐and thermotaxis for sperm selection can improve sperm parameters and function in patients with high DNA fragmentation. Andrologia. 2022;54(11):e14623.
      Pérez‐Cerezales S, Laguna‐Barraza R, de Castro AC, et al. Sperm selection by thermotaxis improves ICSI outcome in mice. Sci Rep. 2018;8(1):2902.
      Bahat A, Eisenbach M. Sperm thermotaxis. Mol Cell Endocrinol. 2006;252(1‐2):115‐119.
      Bahat A, Caplan SR, Eisenbach M. Thermotaxis of human sperm cells in extraordinarily shallow temperature gradients over a wide range. PLoS One. 2012;7(7):e41915.
      Yan Y, Zhang B, Fu Q, Wu J, Liu R. A fully integrated biomimetic microfluidic device for evaluation of sperm response to thermotaxis and chemotaxis. Lab Chip. 2021;21(2):310‐318.
      Knowlton SM, Sadasivam M, Tasoglu S. Microfluidics for sperm research. Trends Biotechnol. 2015;33(4):221‐229.
      Bahat A, Tur‐Kaspa I, Gakamsky A, Giojalas LC, Breitbart H, Eisenbach M. Thermotaxis of mammalian sperm cells: a potential navigation mechanism in the female genital tract. Nat Med. 2003;9(2):149‐150.
      Bahat A, Eisenbach M. Human sperm thermotaxis is mediated by phospholipase C and inositol trisphosphate receptor Ca2+ channel. Biol Reprod. 2010;82(3):606‐616.
      Li Z, Liu W, Qiu T, et al. The construction of an interfacial valve‐based microfluidic chip for thermotaxis evaluation of human sperm. Biomicrofluidics. 2014;8(2):024102.
      Rode S, Elgeti J, Gompper G. Sperm motility in modulated microchannels. New J Phys. 2019;21(1):013016.
      Denissenko P, Kantsler V, Smith DJ, Kirkman‐Brown J. Human spermatozoa migration in microchannels reveals boundary‐following navigation. Proc Natl Acad Sci U S A. 2012;109(21):8007‐8010.
      Smith D, Gaffney E, Blake J, Kirkman‐Brown J. Human sperm accumulation near surfaces: a simulation study. J Fluid Mech. 2009;621:289‐320.
      Nosrati R, Vollmer M, Eamer L, et al. Rapid selection of sperm with high DNA integrity. Lab Chip. 2014;14(6):1142‐1150.
      Raveshi MR, Abdul Halim MS, Agnihotri SN, O'Bryan MK, Neild A, Nosrati R. Curvature in the reproductive tract alters sperm–surface interactions. Nat Commun. 2021;12(1):3446.
      Simchi M, Riordon J, You JB, et al. Selection of high‐quality sperm with thousands of parallel channels. Lab Chip. 2021;21(12):2464‐2475.
      Eamer L, Vollmer M, Nosrati R, et al. Turning the corner in fertility: high DNA integrity of boundary‐following sperm. Lab Chip. 2016;16(13):2418‐2422.
      Nosrati R, Graham PJ, Liu Q, Sinton D. Predominance of sperm motion in corners. Sci Rep. 2016;6(1):26669.
      Berger GK, Smith‐Harrison LI, Sandlow JI. Sperm agglutination: prevalence and contributory factors. Andrologia. 2019;51(5):e13254.
      Nasr‐Esfahani MH, Marziyeh T. Sperm selection based on surface electrical charge. Non‐Invasive Sperm Selection for In Vitro Fertilization: Novel Concepts and Methods. Springer; 2014:41‐50.
      Chan PJ, Jacobson JD, Corselli JU, Patton WC. A simple zeta method for sperm selection based on membrane charge. Fertil Steril. 2006;85(2):481‐486.
      Ainsworth C, Nixon B, Aitken RJ. Development of a novel electrophoretic system for the isolation of human spermatozoa. Hum Reprod. 2005;20(8):2261‐2270.
      Ainsworth C, Nixon B, Jansen R, Aitken R. First recorded pregnancy and normal birth after ICSI using electrophoretically isolated spermatozoa. Hum Reprod. 2007;22(1):197‐200.
      Rosales‐Cruzaley E, Cota‐Elizondo P, Sánchez D, Lapizco‐Encinas BH. Sperm cells manipulation employing dielectrophoresis. Bioprocess Biosyst Eng. 2013;36(10):1353‐1362.
      de Wagenaar B, Dekker S, de Boer HL, et al. Towards microfluidic sperm refinement: impedance‐based analysis and sorting of sperm cells. Lab Chip. 2016;16(8):1514‐1522.
      Simon L, Murphy K, Aston KI, Emery BR, Hotaling JM, Carrell DT. Micro‐electrophoresis: a noninvasive method of sperm selection based on membrane charge. Fertil Steril. 2015;103(2):361‐366.e3.
      Garcia MM, Ohta AT, Walsh TJ, et al. A noninvasive, motility independent, sperm sorting method and technology to identify and retrieve individual viable nonmotile sperm for intracytoplasmic sperm injection. J Urol. 2010;184(6):2466‐2472.
      Ohta AT, Garcia M, Valley JK, et al. Motile and non‐motile sperm diagnostic manipulation using optoelectronic tweezers. Lab Chip. 2010;10(23):3213‐3217.
      Nordhoff V. How to select immotile but viable spermatozoa on the day of intracytoplasmic sperm injection? An embryologist's view. Andrology. 2015;3(2):156‐162.
      Vasilescu SA, Khorsandi S, Ding L, et al. A microfluidic approach to rapid sperm recovery from heterogeneous cell suspensions. Sci Rep. 2021;11(1):1‐11.
      Son J, Murphy K, Samuel R, Gale BK, Carrell DT, Hotaling JM. Non‐motile sperm cell separation using a spiral channel. Anal Methods. 2015;7(19):8041‐8047.
      Guzniczak E, Krüger T, Bridle H, Jimenez M. Limitation of spiral microchannels for particle separation in heterogeneous mixtures: impact of particles’ size and deformability. Biomicrofluidics. 2020;14(4):044113.
      Samuel R, Son J, Jenkins TG, et al. Microfluidic system for rapid isolation of sperm from microdissection TESE specimens. Urology. 2020;140:70‐76.
      Samuel R, Feng H, Jafek A, Despain D, Jenkins T, Gale B. Microfluidic‐based sperm sorting & analysis for treatment of male infertility. Transl Androl Urol. 2018;7(suppl 3):S336‐S347.
      Smith GD, Takayama S. Application of microfluidic technologies to human assisted reproduction. Mol Hum Reprod. 2017;23(4):257‐268.
      Gode F, Bodur T, Gunturkun F, et al. Comparison of microfluid sperm sorting chip and density gradient methods for use in intrauterine insemination cycles. Fertil Steril. 2019;112(5):842‐848.e1.
      Yalcinkaya Kalyan E, Can Çelik S, Okan O, Akdeniz G, Karabulut S, Caliskan E. Does a microfluidic chip for sperm sorting have a positive add‐on effect on laboratory and clinical outcomes of intracytoplasmic sperm injection cycles? A sibling oocyte study. Andrologia. 2019;51(10):e13403.
      Yetkinel S, Kilicdag EB, Aytac PC, Haydardedeoglu B, Simsek E, Cok T. Effects of the microfluidic chip technique in sperm selection for intracytoplasmic sperm injection for unexplained infertility: a prospective, randomized controlled trial. J Assist Reprod Genet. 2019;36:403‐409.
      Yildiz K, Yuksel S. Use of microfluidic sperm extraction chips as an alternative method in patients with recurrent in vitro fertilisation failure. J Assist Reprod Genet. 2019;36:1423‐1429.
      Mirsanei JS, Sheibak N, Zandieh Z, et al. Microfluidic chips as a method for sperm selection improve fertilization rate in couples with fertilization failure. Arch Gynecol Obstet. 2022;306(3):901‐910.
      Godiwala P, Kwieraga J, Neuber E, Yohe MS, Bartolucci A, Engmann L. Rationale and study design of a double‐blinded prospective randomized clinical trial comparing euploidy rates among embryos created from sibling oocytes injected with sperm processed by microfluidics or by density gradient centrifugation. Contemp Clin Trials. 2022;120:106893.
      Aydın Ş, Bulgan Kılıçdağ E, Çağlar Aytaç P, Cok T, Şimşek E, Haydardedeoğlu B. Prospective randomized controlled study of a microfluidic chip technology for sperm selection in male infertility patients. Andrologia. 2022;54(6):e14415.
      Godiwala P, Almanza E, Kwieraga J, et al. Embryologic outcomes among patients using a microfluidics chip compared to density gradient centrifugation to process sperm: a paired analysis. J Assist Reprod Genet. 2022;39(7):1523‐1529.
      Ozcan P, Takmaz T, Yazici MGK, et al. Does the use of microfluidic sperm sorting for the sperm selection improve in vitro fertilization success rates in male factor infertility? J Obstet Gynaecol Res. 2021;47(1):382‐388.
      Keskin M, Pabuçcu EG, Arslanca T, Demirkıran ÖD, Pabuçcu R. Does microfluidic sperm sorting affect embryo euploidy rates in couples with high sperm DNA fragmentation? Reprod Sci. 2022;29(6):1801‐1808.
      Guler C, Melil S, Ozekici U, Donmez Cakil Y, Selam B, Cincik M. Sperm selection and embryo development: a comparison of the density gradient centrifugation and microfluidic chip sperm preparation methods in patients with astheno‐teratozoospermia. Life. 2021;11(9):933.
      Srinivas S, Donthi S, Mettler AD, Tolani AD, Deenadayal M. Does choosing microfluidics for sperm sorting offer an advantage to improve clinical pregnancies in donor egg recipients? J Hum Reprod Sci. 2022;15(2):143.
      Quinn MM, Ribeiro S, Juarez‐Hernandez F, et al. Microfluidic preparation of spermatozoa for ICSI produces similar embryo quality to density‐gradient centrifugation: a pragmatic, randomized controlled trial. Hum Reprod. 2022;37(7):1406‐1413.
      Dressaire E, Sauret A. Clogging of microfluidic systems. Soft Matter. 2017;13(1):37‐48.
      Sauret A, Somszor K, Villermaux E, Dressaire E. Growth of clogs in parallel microchannels. Phys Rev Fluids. 2018;3(10):104301.
      Wyss HM, Blair DL, Morris JF, Stone HA, Weitz DA. Mechanism for clogging of microchannels. Phys Rev E. 2006;74(6):061402.
      Cheng Y, Wang Y, Ma Z, Wang W, Ye X. A bubble‐and clogging‐free microfluidic particle separation platform with multi‐filtration. Lab Chip. 2016;16(23):4517‐4526.
      Kang D‐H, Kim K, Kim Y‐J. An anti‐clogging method for improving the performance and lifespan of blood plasma separation devices in real‐time and continuous microfluidic systems. Sci Rep. 2018;8(1):17015.
      Wang Y‐N, Fu L‐M. Micropumps and biomedical applications—a review. Microelectron Eng. 2018;195:121‐138.
      Nosrati R. Lab on a chip devices for fertility: from proof‐of‐concept to clinical impact. Lab Chip. 2022;22(9):1680‐1689.
      Sarabi MR, Yigci D, Alseed MM, et al. Disposable paper‐based microfluidics for fertility testing. iScience. 2022;25(9):104986.
    • Grant Information:
      NanoLund Organization
    • Contributed Indexing:
      Keywords: boundary following; chemotaxis and thermotaxis; microfluidic sperm selection; rheotaxis; self‐motility
    • Publication Date:
      Date Created: 20231227 Date Completed: 20240814 Latest Revision: 20240814
    • Publication Date:
      20240814
    • Accession Number:
      10.1111/andr.13578
    • Accession Number:
      38148634